Publications by authors named "David S Strayer"

Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage.

View Article and Find Full Text PDF

HIV-1 trans-acting protein Tat, an essential protein for viral replication, is a key mediator of neurotoxicity. If Tat oxidant injury and neurotoxicity have been described, consequent neuroinflammation is less understood. Rat caudate-putamens (CPs) were challenged with Tat, with or without prior rSV40-delivered superoxide dismutase or glutathione peroxidase.

View Article and Find Full Text PDF

Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. The CC chemokine receptor 5 (CCR5) is a member of CC-chemokine receptor family that binds several chemokines, including CCL3 (macrophage inflammatory protein-1alpha, MIP-1alpha), CCL4 (macrophage inflammatory protein-1beta, MIP-1beta) and CCL5 (RANTES). The current review examines the relationship between CCR5 and the microglia in different neurological disorders and models of CNS injury.

View Article and Find Full Text PDF

Unlabelled: The cardioprotective effects of moderate ethanol consumption have been known for years and have generally been ascribed to long-term effects of alcohol on blood lipids. However, other mechanisms, particularly ethanol-induced increase in blood vessel density, may also be involved. Our goal was to understand the relationship between ethanol consumption, new blood vessel formation in vivo and protection from injury due to ischemia and ischemia/reperfusion.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is compromised in many systemic and CNS diseases, including HIV-1 infection of the brain. We studied BBB disruption caused by HIV-1 envelope glycoprotein 120 (gp120) as a model. Exposure to gp120, whether acute [by direct intra-caudate-putamen (CP) injection] or chronic [using SV(gp120), an experimental model of ongoing production of gp120] disrupted the BBB, and led to leakage of vascular contents.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are implicated in diverse processes, such as neuroinflammation, leakiness of the blood-brain barrier (BBB) and direct cellular damage in neurodegenerative and other CNS diseases. Tissue destruction by MMPs is regulated by their endogenous tissue inhibitors (TIMPs). TIMPs prevent excessive MMP-related degradation of extracellular matrix components.

View Article and Find Full Text PDF

HIV-associated neurocognitive disorder (HAND) is an increasingly common, progressive disease characterized by neuronal loss and progressively deteriorating CNS function. HIV-1 gene products, particularly gp120 and Tat elicit reactive oxygen species (ROS) that lead to oxidant injury and cause neuron apoptosis. Understanding of, and developing therapies for, HAND requires accessible models of the disease.

View Article and Find Full Text PDF

WE COMPARED LUNG DELIVERY METHODS OF RECOMBINANT ADENOVIRUS (RAD): (1) rAd suspended in saline, (2) rAd suspended in saline followed by a pulse-chase of a perfluorochemical (PFC) liquid mixture, and (3) a PFC-rAd suspension. Cell uptake, distribution, and temporal expression of rAd were examined using A549 cells, a murine model using luciferase bioluminescence, and histological analyses. Relative to saline, a 4X increase in transduction efficiency was observed in A549 cells exposed to PFC-rAd for 2-4 h.

View Article and Find Full Text PDF

Immune-mediated damage to the central nervous system (CNS) is an important contributor to many CNS diseases, including epilepsy. Chemokines play a role in leukocyte recruitment to, and migration across, the blood-brain barrier (BBB) during many such processes. We previously investigated the role of the chemokine receptor CCR5 in a rat model of epilepsy based on intraperitoneal kainic acid (KA) administration.

View Article and Find Full Text PDF

We administered recombinant SV40-derived viral vectors (rSV40s) intravenously to mice with or without prior intraperitoneal injection of mannitol to deliver transgenes to the central nervous system (CNS). We detected transgene-expressing cells (mainly neurons) most prominently in the cortex and spinal cord; prior intraperitoneal mannitol injection increased CNS gene delivery tenfold. Intravenous injection of rSV40s, particularly with mannitol pretreatment, resulted in extensive expression of multiple transgenes throughout the CNS.

View Article and Find Full Text PDF

Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. We investigated the role of the chemokine receptor CCR5 in seizures. We used a rat model based on intraperitoneal kainic acid (KA) administration.

View Article and Find Full Text PDF

There are several diseases for which gene transfer therapy to the cerebellum might be practicable. In these studies, we used recombinant Tag-deleted SV40-derived vectors (rSV40s) to study gene delivery targeting the cerebellum. These vectors transduce neurons and microglia very effectively in vitro and in vivo, and so we tested them to evaluate gene transfer to the cerebellum in vivo.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) disruption occurs during human immunodeficiency virus encephalopathy, but the mechanisms involved are not understood. We studied how acute and ongoing exposure to human immunodeficiency virus 1 envelope gp120 alters BBB structure and permeability. Intravenous Evans blue, given before stereotaxic gp120 injection into the caudate putamen of rats, was rapidly extravasated.

View Article and Find Full Text PDF

Recombinant simian virus 40 (rSV40)-derived vectors are particularly useful for gene delivery to bone marrow progenitor cells and their differentiated derivatives, certain types of epithelial cells (e.g., hepatocytes), and central nervous system neurons and microglia.

View Article and Find Full Text PDF

Recombinant simian virus 40 (rSV40)-derived vectors are particularly useful for gene delivery to bone marrow progenitor cells and their differentiated derivatives, certain types of epithelial cells (e.g., hepatocytes), and central nervous system neurons and microglia.

View Article and Find Full Text PDF

HIV-1 effects on the blood-brain barrier (BBB) structure and function are still poorly understood in animal models based on direct administration of recombinant HIV proteins. We therefore injected HIV-1 envelope glycoprotein, gp120, into rat caudate-putamens (CPs) and examined vascular integrity and function. Gp120 coimmunostained with endothelial cell marker, CD31.

View Article and Find Full Text PDF

HIV-1 gp120 neurotoxicity and oxidant injury are well documented, but consequent neuroinflammation is less understood. Rat caudate-putamens (CPs) were challenged with 100-500 ng HIV-1BaL gp120, with or without prior rSV40-delivered superoxide dismutase or glutathione peroxidase. CD11b-positive microglia were increased 1 day post-challenge; Iba-1- and ED1-positive cells peaked at 7 days and 14 days.

View Article and Find Full Text PDF

We examined the role of reactive oxygen species (ROS) in loss of dopaminergic neurons (DNs) from the substantia nigra (SN) in neuroAIDS. The frequency of Parkinson-like symptomatology, and DN loss, in neuroAIDS is often attributed to nonspecific DN fragility to oxidative stress. Cultured DN are more sensitive to ROS than non-dopaminergic neurons (RN): DN underwent apoptosis at far lower H(2)O(2) concentrations than RN.

View Article and Find Full Text PDF

Human immunodeficiency virus 1 (HIV-1) encephalopathy is thought to result in part from the toxicity of HIV-1 envelope glycoprotein gp120 for neurons. Experimental systems for studying the effects of gp120 and other HIV proteins on the brain have been limited to the acute effects of recombinant proteins in vitro or in vivo in simian immunodeficiency virus-infected monkeys. We describe an experimental rodent model of ongoing gp120-induced neurotoxicity in which HIV-1 envelope is expressed in the brain using an SV40-derived gene delivery vector, SV(gp120).

View Article and Find Full Text PDF

Toxicity of HIV-1 envelope glycoprotein (gp120) for substantia nigra (SN) neurons may contribute to the Parkinsonian manifestations often seen in HIV-1-associated dementia (HAD). We studied the neurotoxicity of gp120 for dopaminergic neurons and potential neuroprotection by antioxidant gene delivery. Rats were injected stereotaxically into their caudate-putamen (CP); CP and (substantia nigra) SN neuron loss was quantified.

View Article and Find Full Text PDF

CCR3 has been implicated as a co-receptor for human immunodeficiency virus type 1 (HIV-1), particularly in brain microglia cells. We sought to clarify the comparative roles of CCR3 and CCR5 in the central nervous system (CNS) HIV-1 infection and the potential utility of CCR3 as a target for manipulation via gene transfer. To target CCR3, we developed a single-chain antibody (SFv) and an interfering RNA (RNAi), R3-526.

View Article and Find Full Text PDF

Introduction: Hemophagocytic lymphohistiocytosis is an immune-mediated syndrome that typically has a rapidly progressive course that can result in pancytopenia, coagulopathy, multi-system organ failure and death.

Case Presentation: A 57-year-old Caucasian woman was referred in fulminant hemophagocytic lymphohistiocytosis, with fever, pancytopenia, splenomegaly, mental status changes and respiratory failure. She was found to have stage IV classical Hodgkin lymphoma, in addition to Epstein-Barr virus and cytomegalovirus viremia.

View Article and Find Full Text PDF

Background: Gene transfer to the CNS has been approached using various vectors.

Objective: We illustrate how SV40-derived vectors may be useful to deliver long-term gene expression to the brain, locally or diffusely.

Results/conclusion: SV40-derived vectors transduce neurons and microglial cells.

View Article and Find Full Text PDF

We studied the distribution of transgene-expressing cells after direct gene transfer into the bone marrow (BM). Rats received direct injection into the femoral BM of SV(Nef-FLAG), a Tag-deleted recombinant SV40 carrying a marker gene (FLAG epitope). Controls received an unrelated rSV40 or saline.

View Article and Find Full Text PDF