Stable mercury (Hg) isotope ratios are an emerging tracer for biogeochemical transformations in environmental systems, but their application requires knowledge of isotopic enrichment factors for individual processes. We investigated Hg isotope fractionation during dark, abiotic reduction of Hg(II) by dissolved iron(Fe)(II), magnetite, and Fe(II) sorbed to boehmite or goethite by analyzing both the reactants and products of laboratory experiments. For homogeneous reduction of Hg(II) by dissolved Fe(II) in continuously purged reactors, the results followed a Rayleigh distillation model with enrichment factors of -2.
View Article and Find Full Text PDFTracing emission sources and transformations of atmospheric mercury with Hg stable isotopes depends on the ability to collect amounts sufficient for reliable quantification. Commonly employed active sampling methods require power and long pumping times, which limits the ability to deploy in remote locations and at high spatial resolution and can lead to compromised traps. In order to overcome these limitations, we conducted field and laboratory experiments to assess the preservation of isotopic composition during sampling of gaseous elemental mercury (GEM) with a passive air sampler (PAS) that uses a sulfur-impregnated carbon sorbent and a diffusive barrier.
View Article and Find Full Text PDFEnviron Sci Process Impacts
May 2018
The presence of pesticides in streams in winter, five to six years following bans on their municipal use suggests that complicated transport behaviour, such as subsurface retention and/or accumulation of pesticides and its release during storms, could be important for understanding recovery time frames following bans or legislation that aim to reduce chemical inputs. We investigated late fall and winter dynamics of four herbicides in paired urban and rural watersheds in Toronto, Canada during rainfall and snowmelt. The range of average concentrations and loads of the sum of atrazine, metolachlor, 2,4-D and mecoprop overlapped in the two types of watersheds, with slightly higher average concentrations in the rural watershed.
View Article and Find Full Text PDFThough it has been established that stream concentrations of polycyclic aromatic hydrocarbons (PAHs) in urban watersheds can be much greater than those in less developed watersheds, knowledge of transport mechanisms is lacking, particularly in temperate, Northern climates with seasonal snow packs. We combine high-resolution stream water sampling with air, suspended solid and stream flow monitoring to investigate the source to stream transport of PAHs during rainfall and snowmelt in paired watersheds with contrasting land use. Despite similar particle loads, contamination of particles that is 8-48 times higher in the urban watersheds leads to area-normalized loads of PAHs that are 6-82 times greater than in the agricultural watersheds.
View Article and Find Full Text PDF