The met proto-oncogene is functionally linked with tumorigenesis and metastatic progression. Validation of the receptor tyrosine kinase c-Met as a selective anticancer target has awaited the emergence of selective c-Met inhibitors. Herein, we report ARQ 197 as the first non-ATP-competitive small molecule that selectively targets the c-Met receptor tyrosine kinase.
View Article and Find Full Text PDFActivation of DNA damage checkpoint pathways, including Chk2, serves as an anticancer barrier in precancerous lesions. In an effort to identify small-molecule activators of Chk2, the authors developed a quantitative cell-based assay using a high-content analysis (HCA) platform. Induction of phosphorylated Chk2 was evaluated using several different parameters, including fold induction, Kolmogorov-Smirnov score, and percentage of positively stained cells.
View Article and Find Full Text PDFThe ubiquitin ligase Hul5 was recently identified as a component of the proteasome, a multisubunit protease that degrades ubiquitin-protein conjugates. We report here a proteasome-dependent conjugating activity of Hul5 that endows proteasomes with the capacity to extend ubiquitin chains. hul5 mutants show reduced degradation of multiple proteasome substrates in vivo, suggesting that the polyubiquitin signal that targets substrates to the proteasome can be productively amplified at the proteasome.
View Article and Find Full Text PDFUbiquitin chains serve as a recognition motif for the proteasome, a multisubunit protease, which degrades its substrates into polypeptides while releasing ubiquitin for reuse. Yeast proteasomes contain two deubiquitinating enzymes, Ubp6 and Rpn11. Rpn11 promotes protein breakdown through its degradation-coupled activity.
View Article and Find Full Text PDFThe proteasome is a highly complex, ATP-dependent protease, consisting of over 30 subunits, and dedicated mainly to the degradation of ubiquitin-protein conjugates. Proteasomes are evolutionarily conserved in the eukaryotic kingdom, and those of yeast are well suited to serve as a general model. We describe techniques for the purification of proteasomes from budding yeast in milligram amounts via conventional and affinity-based strategies.
View Article and Find Full Text PDFMol Cell Biol
December 2003
Cycloheximide acts at the large subunit of the ribosome to inhibit translation. Here we report that ubiquitin levels are critical for the survival of Saccharomyces cerevisiae cells in the presence of cycloheximide: ubiquitin overexpression confers resistance to cycloheximide, while a reduced ubiquitin level confers sensitivity. Consistent with these findings, ubiquitin is unstable in yeast (t(1/2) = 2 h) and is rapidly depleted upon cycloheximide treatment.
View Article and Find Full Text PDFWe have identified proteins that are abundant in affinity-purified proteasomes, but absent from proteasomes as previously defined because elevated salt concentrations dissociate them during purification. The major components are a deubiquitinating enzyme (Ubp6), a ubiquitin-ligase (Hul5), and an uncharacterized protein (Ecm29). Ecm29 tethers the proteasome core particle to the regulatory particle.
View Article and Find Full Text PDFThe yeast protein Rad23 belongs to a diverse family of proteins that contain an amino-terminal ubiquitin-like (UBL) domain. This domain mediates the binding of Rad23 to proteasomes, which in turn promotes DNA repair and modulates protein degradation, possibly by delivering ubiquitinylated cargo to proteasomes. Here we show that Rad23 binds proteasomes by directly interacting with the base subcomplex of the regulatory particle of the proteasome.
View Article and Find Full Text PDF