Publications by authors named "David S Eisenberg"

The ISA Nomenclature Committee met at the XIX International Symposium of Amyloidosis in Rochester, MN, 27 May 2024. The in-person event was followed by many electronic discussions, resulting in the current updated recommendations. The general nomenclature principles are unchanged.

View Article and Find Full Text PDF

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro.

View Article and Find Full Text PDF

Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer's disease (AD). Previously we found that the D-peptide D-TLKIVWC disassembles tau fibrils from AD brains (AD-tau) into benign segments with no energy source present beyond ambient thermal agitation. This disassembly by a short peptide was unexpected, given that AD-tau is sufficiently stable to withstand disassembly in boiling SDS detergent.

View Article and Find Full Text PDF

ATTR amyloidosis is caused by the deposition of transthyretin in the form of amyloid fibrils in virtually every organ of the body, including the heart. This systemic deposition leads to a phenotypic variability that has not been molecularly explained yet. In brain amyloid conditions, previous studies suggest an association between clinical phenotype and the molecular structures of their amyloid fibrils.

View Article and Find Full Text PDF

We previously presented a bioinformatic method for identifying diseases that arise from a mutation in a protein's low-complexity domain that drives the protein into pathogenic amyloid fibrils. One protein so identified was the tropomyosin-receptor kinase-fused gene protein (TRK-fused gene protein or TFG). Mutations in TFG are associated with degenerative neurological conditions.

View Article and Find Full Text PDF

Heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) is a human ribonucleoprotein that transports RNA to designated locations for translation via its ability to phase separate. Its mutated form, D290V, is implicated in multisystem proteinopathy known to afflict two families, mainly with myopathy and Paget's disease of bone. Here, we investigate this mutant form of hnRNPA2 by determining cryo-EM structures of the recombinant D290V low complexity domain.

View Article and Find Full Text PDF

Despite much effort, antibody therapies for Alzheimer's disease (AD) have shown limited efficacy. Challenges to the rational design of effective antibodies include the difficulty of achieving specific affinity to critical targets, poor expression, and antibody aggregation caused by buried charges and unstructured loops. To overcome these challenges, we grafted previously determined sequences of fibril-capping amyloid inhibitors onto a camel heavy chain antibody scaffold.

View Article and Find Full Text PDF
Article Synopsis
  • The Nucleocapsid protein (NCAP) of SARS-CoV-2 plays a vital role in the virus's function, with its self-assembly being central to this role.
  • Analysis shows that NCAP has low-complexity domains (LCDs) similar to those in other proteins, which can form phase separation droplets and amyloid fibrils.
  • The study reveals that the central LCD of NCAP can lead to both phase separation and amyloid formation, highlighting three adhesive segments that, when targeted by a new peptide (G12), can inhibit NCAP's self-assembly and exhibit antiviral effects against SARS-CoV-2.
View Article and Find Full Text PDF
Article Synopsis
  • - The accumulation of alpha-synuclein in the brain is linked to Parkinson's disease and related disorders, making it a key target for treatment.
  • - Researchers have discovered two small molecules, CNS-11 and CNS-11g, which can break down these harmful alpha-synuclein fibrils and reduce their toxicity in nerve cells.
  • - These compounds not only work on lab-generated fibrils but also disassemble those from patients with multiple system atrophy, showing potential as effective therapies for treating synucleinopathies and being able to target brain tissue in mice.
View Article and Find Full Text PDF

The Nomenclature Committee of the International Society of Amyloidosis met at the XVIII International Symposium on Amyloidosis in September and virtually in October 2022 with discussions resulting in this upgraded nomenclature recommendation. The nomenclature principles remain unchanged but there is an ongoing discussion regarding the importance and varying nature of intracellular protein aggregates, particularly those associated with neurodegenerative diseases. Six novel proteins were added to the list of human amyloid fibril proteins.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the consequence of neuronal death and brain atrophy associated with the aggregation of protein tau into fibrils. Thus disaggregation of tau fibrils could be a therapeutic approach to AD. The small molecule EGCG, abundant in green tea, has long been known to disaggregate tau and other amyloid fibrils, but EGCG has poor drug-like properties, failing to fully penetrate the brain.

View Article and Find Full Text PDF

Amyloid protein aggregation is commonly associated with progressive neurodegenerative diseases, however not all amyloid fibrils are pathogenic. The neuronal cytoplasmic polyadenylation element binding protein is a regulator of synaptic mRNA translation and has been shown to form functional amyloid aggregates that stabilize long-term memory. In adult Drosophila neurons, the cytoplasmic polyadenylation element binding homolog Orb2 is expressed as 2 isoforms, of which the Orb2B isoform is far more abundant, but the rarer Orb2A isoform is required to initiate Orb2 aggregation.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by the pathologic accumulation of aggregated proteins. Known as amyloid, these fibrillar aggregates include proteins such as tau and amyloid-β (Aβ) in Alzheimer's disease (AD) and alpha-synuclein (αSyn) in Parkinson's disease (PD). The development and spread of amyloid fibrils within the brain correlates with disease onset and progression, and inhibiting amyloid formation is a possible route toward therapeutic development.

View Article and Find Full Text PDF

Proteins including FUS, hnRNPA2, and TDP-43 reversibly aggregate into amyloid-like fibrils through interactions of their low-complexity domains (LCDs). Mutations in LCDs can promote irreversible amyloid aggregation and disease. We introduce a computational approach to identify mutations in LCDs of disease-associated proteins predicted to increase propensity for amyloid aggregation.

View Article and Find Full Text PDF

Low-complexity domains (LCDs) of proteins have been shown to self-associate, and pathogenic mutations within these domains often drive the proteins into amyloid aggregation associated with disease. These domains may be especially susceptible to amyloidogenic mutations because they are commonly intrinsically disordered and function in self-association. The question therefore arises whether a search for pathogenic mutations in LCDs of the human proteome can lead to identification of other proteins associated with amyloid disease.

View Article and Find Full Text PDF

In neurodegenerative diseases including Alzheimer’s and amyotrophic lateral sclerosis, proteins that bind RNA are found in aggregated forms in autopsied brains. Evidence suggests that RNA aids nucleation of these pathological aggregates; however, the mechanism has not been investigated at the level of atomic structure. Here, we present the 3.

View Article and Find Full Text PDF

Frontotemporal lobar degeneration (FTLD) is the third most common neurodegenerative condition after Alzheimer's and Parkinson's diseases. FTLD typically presents in 45 to 64 year olds with behavioural changes or progressive decline of language skills. The subtype FTLD-TDP is characterized by certain clinical symptoms and pathological neuronal inclusions with TAR DNA-binding protein (TDP-43) immunoreactivity.

View Article and Find Full Text PDF

Atomic structures of amyloid oligomers that capture the neurodegenerative disease pathology are essential to understand disease-state causes and finding cures. Here we investigate the G6W mutation of the cytotoxic, hexameric amyloid model KV11. The mutation results into an asymmetric dodecamer composed of a pair of 30° twisted antiparallel β-sheets.

View Article and Find Full Text PDF

Membraneless organelles (MLOs) are vital and dynamic reaction centers in cells that compartmentalize the cytoplasm in the absence of a membrane. Multivalent interactions between protein low-complexity domains contribute to MLO organization. Previously, we used computational methods to identify structural motifs termed low-complexity amyloid-like reversible kinked segments (LARKS) that promote phase transition to form hydrogels and that are common in human proteins that participate in MLOs.

View Article and Find Full Text PDF

The hidden world of amyloid biology has suddenly snapped into atomic-level focus, revealing over 80 amyloid protein fibrils, both pathogenic and functional. Unlike globular proteins, amyloid proteins flatten and stack into unbranched fibrils. Stranger still, a single protein sequence can adopt wildly different two-dimensional conformations, yielding distinct fibril polymorphs.

View Article and Find Full Text PDF

Amyloidosis of human islet amyloid polypeptide (hIAPP) is a pathological hallmark of type II diabetes (T2D), an epidemic afflicting nearly 10% of the world's population. To visualize disease-relevant hIAPP fibrils, we extracted amyloid fibrils from islet cells of a T2D donor and amplified their quantity by seeding synthetic hIAPP. Cryo-EM studies revealed four fibril polymorphic atomic structures.

View Article and Find Full Text PDF

Unlabelled: The SARS-CoV-2 Nucleoprotein (NCAP) functions in RNA packaging during viral replication and assembly. Computational analysis of its amino acid sequence reveals a central low-complexity domain (LCD) having sequence features akin to LCDs in other proteins known to function in liquid-liquid phase separation. Here we show that in the presence of viral RNA, NCAP, and also its LCD segment alone, form amyloid-like fibrils when undergoing liquid-liquid phase separation.

View Article and Find Full Text PDF

The ISA Nomenclature Committee met electronically before and directly after the XVII ISA International Symposium on Amyloidosis, which, unfortunately, had to be virtual in September 2020 due to the ongoing COVID-19 pandemic instead of a planned meeting in Tarragona in March. In addition to confirmation of basic nomenclature, several additional concepts were discussed, which are used in scientific amyloid literature. Among such concepts are cytotoxic oligomers, protofibrils, primary and secondary nucleation, seeding and cross-seeding, amyloid signature proteins, and amyloid plaques.

View Article and Find Full Text PDF

hnRNPA2 is a human ribonucleoprotein (RNP) involved in RNA metabolism. It forms fibrils both under cellular stress and in mutated form in neurodegenerative conditions. Previous work established that the C-terminal low-complexity domain (LCD) of hnRNPA2 fibrillizes under stress, and missense mutations in this domain are found in the disease multisystem proteinopathy (MSP).

View Article and Find Full Text PDF

Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing.

View Article and Find Full Text PDF