The decline in mucosal immunity during aging increases susceptibility, morbidity and mortality to infections acquired the gastrointestinal and respiratory tracts in the elderly. We previously showed that this immunosenescence includes a reduction in the functional maturation of M cells in the follicle-associated epithelia (FAE) covering the Peyer's patches, diminishing the ability to sample of antigens and pathogens from the gut lumen. Here, co-expression analysis of mRNA-seq data sets revealed a general down-regulation of most FAE- and M cell-related genes in Peyer's patches from aged mice, including key transcription factors known to be essential for M cell differentiation.
View Article and Find Full Text PDFPrion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain.
View Article and Find Full Text PDFAging has a profound effect on the immune system, termed immunosenescence, resulting in increased incidence and severity of infections and decreased efficacy of vaccinations. We previously showed that immunosurveillance in the intestine, achieved primarily through antigen sampling M cells in the follicle associated epithelium (FAE) of Peyer's patches, was compromised during aging due to a decline in M cell functional maturation. The intestinal microbiota also changes significantly with age, but whether this affects M cell maturation was not known.
View Article and Find Full Text PDFPrion infections in the central nervous system (CNS) can cause extensive neurodegeneration. Systemic inflammation can affect the progression of some neurodegenerative disorders. Therefore, we used the gastrointestinal helminth pathogen Trichuris muris to test the hypothesis that a chronic systemic inflammatory response to a gastrointestinal infection would similarly affect CNS prion disease pathogenesis.
View Article and Find Full Text PDFThe follicle-associated epithelium (FAE) is a specialized structure that samples luminal antigens and transports them into mucosa-associated lymphoid tissues (MALT). In mammals, transcytosis of antigens across the gut epithelium is performed by a subset of FAE cells known as M cells. Here we show that colony-stimulating factor 1 receptor (CSF1R) is expressed by a subset of cells in the avian bursa of Fabricius FAE.
View Article and Find Full Text PDFThe early replication of some orally-acquired prion strains upon stromal-derived follicular dendritic cells (FDC) within the small intestinal Peyer's patches is essential to establish host infection, and for the disease to efficiently spread to the brain. Factors that influence the early accumulation of prions in Peyer's patches can directly influence disease pathogenesis. The host's immune response to a gastrointestinal helminth infection can alter susceptibility to co-infection with certain pathogenic bacteria and viruses.
View Article and Find Full Text PDFTrichuris muris is a natural mouse helminth pathogen which establishes infection specifically in the caecum and proximal colon. The rapid expulsion of T. muris in resistant mouse strains is associated with the induction of a protective T helper cell type 2 (Th2)-polarized immune response.
View Article and Find Full Text PDFColony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells, but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis.
View Article and Find Full Text PDFMany natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain.
View Article and Find Full Text PDFM cells reside within the follicle-associated epithelium (FAE) overlying the gut-associated lymphoid tissues. These unique phagocytic epithelial cells enable the mucosal immune system to sample antigens within the lumen of the intestine. The differentiation of M cells from uncommitted precursors in the FAE is dependent on the production of receptor activator of nuclear factor-κB ligand (RANKL) by subepithelial stromal cells.
View Article and Find Full Text PDFPrion diseases are a unique group of transmissible, chronic, neurodegenerative disorders. Following peripheral exposure (e.g.
View Article and Find Full Text PDFUnlabelled: Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence.
View Article and Find Full Text PDFIn humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue.
View Article and Find Full Text PDFThe MacBlue transgenic mouse uses the Csf1r promoter and first intron to drive expression of gal4-VP16, which in turn drives a cointegrated gal4-responsive UAS-ECFP cassette. The Csf1r promoter region used contains a deletion of a 150 bp conserved region covering trophoblast and osteoclast-specific transcription start sites. In this study, we examined expression of the transgene in embryos and adult mice.
View Article and Find Full Text PDFBacterial and viral infections of the gastrointestinal tract are more common in the elderly and represent a major cause of morbidity and mortality. The mucosal immune system provides the first line of defence against pathogens acquired by ingestion and inhalation, but its function is adversely affected in the elderly. This aging-related decline in the immune function is termed immunosenescence and is associated with diminished abilities to generate protective immunity, reduced vaccine efficacy, increased incidence of cancer, inflammation and autoimmunity, and the impaired ability to generate tolerance to harmless antigens.
View Article and Find Full Text PDFSalmonella Typhimurium specifically targets antigen-sampling microfold (M) cells to translocate across the gut epithelium. Although M cells represent a small proportion of the specialized follicular-associated epithelium (FAE) overlying mucosa-associated lymphoid tissues, their density increases during Salmonella infection, but the underlying molecular mechanism remains unclear. Using in vitro and in vivo infection models, we demonstrate that the S.
View Article and Find Full Text PDFThe follicle-associated epithelium (FAE) overlying the Peyer's patches and the microfold cells (M cells) within it are important sites of antigen transcytosis across the intestinal epithelium. Using a meta-analysis approach, we identified a transcriptional signature that distinguished the FAE from a large collection of mouse cells and tissues. A co-expressed cluster of 21 FAE-specific genes was identified, and the analysis of the transcription factor binding site motifs in their promoter regions indicated that these genes shared an underlying transcriptional programme.
View Article and Find Full Text PDFFollicular dendritic cells (FDC) are an important subset of stromal cells within the germinal centres of lymphoid tissues. They are specialized to trap and retain antigen-containing immune complexes on their surfaces to promote B-cell maturation and immunoglobulin isotype class-switching. However, little is known of the cell types from which FDC originate.
View Article and Find Full Text PDFBacterial toxins are the causative agent at pathology in a variety of diseases. Although not always the primary target of these toxins, many have been shown to have potent immunomodulatory effects, for example, inducing immune responses to co-administered antigens and suppressing activation of immune cells. These abilities of bacterial toxins can be harnessed and used in a therapeutic manner, such as in vaccination or the treatment of autoimmune diseases.
View Article and Find Full Text PDFObjective: The purpose of this study is to describe the musculoskeletal rehabilitation model used to care for combat and severely wounded or ill US military service members at an integrated Comprehensive Combat and Complex Casualty Care center located at Naval Medical Center San Diego.
Methods: Through a collaborative and iterative process, providers from the various services included at the Comprehensive Combat and Complex Casualty Care program developed a description of the integration of services provided at this location.
Results: After construction of the facility in 2007, the program has provided services for approximately 2 years.