Lipoarabinomannan (LAM) is a promising target biomarker for diagnosing subclinical and clinical tuberculosis (TB). Urine LAM (uLAM) testing using rapid diagnostic tests (RDTs) has been approved for people living with HIV (PLWH), however there is limited data regarding uLAM levels in HIV-negative (HIV-ve) adults with clinical TB. We conducted a clinical study of adults presenting with clinical TB-related symptoms at the National Lung Hospital in Hanoi, Vietnam.
View Article and Find Full Text PDFDiagnostics are critical tools that guide clinical decision-making for patient care and support disease surveillance. Despite its importance, developers and manufacturers often note that access to specimen panels and essential reagents is one of the key challenges in developing quality diagnostics, particularly in low-resource settings. A recent example, as the COVID-19 pandemic unfolded there was a need for clinical samples across the globe to support the rapid development of diagnostics.
View Article and Find Full Text PDFRapid diagnostic tests (RDTs) that detect antigen indicative of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can help in making quick health care decisions and regularly monitoring groups at risk of infection. With many RDT products entering the market, it is important to rapidly evaluate their relative performance. Comparison of clinical evaluation study results is challenged by protocol design variations and study populations.
View Article and Find Full Text PDFProcessing and storing blood samples for future analysis of biomarkers can be challenging in resource limited environments. The preparation of dried blood spots (DBS) from finger-stick collection of whole blood is a widely used and established method as DBS are biosafe, and allow simpler field processing, storage, and transport protocols than serum or plasma. Therefore, DBS are commonly used in population surveys to assess infectious disease and/or micronutrient status.
View Article and Find Full Text PDFLipoarabinomannan (LAM), a component of the Mycobacterium tuberculosis (MTB) cell wall, is detectable in the urine of MTB infected patients with active tuberculosis (TB). LAM-specific antibodies (Igs) have been developed by a variety of traditional and recombinant methods for potential use in a rapid diagnostic test (RDT). We evaluated the analytical performance of the TB LAM Igs to identify pairs that offer superior performance over existing urine LAM tests.
View Article and Find Full Text PDFInexpensive, simple, rapid diagnostics are necessary for efficient detection, treatment, and mitigation of COVID-19. Assays for SARS-CoV2 using reverse transcription polymerase chain reaction (RT-PCR) offer good sensitivity and excellent specificity, but are expensive, slowed by transport to centralized testing laboratories, and often unavailable. Antigen-based assays are inexpensive and can be rapidly mass-produced and deployed at point-of-care, with lateral flow assays (LFAs) being the most common format.
View Article and Find Full Text PDFA lack of comparative data across laboratories is often a barrier to the uptake and adoption of new technologies. Furthermore, data generated by different immunoassay methods may be incomparable due to a lack of harmonization. In this multicenter study, we describe validation experiments conducted in a single lab and cross-lab comparisons of assay results to assess the performance characteristics of the Q-plex™ 7-plex Human Micronutrient Array (7-plex), an immunoassay that simultaneously quantifies seven biomarkers associated with micronutrient (MN) deficiencies, inflammation and malarial antigenemia using plasma or serum; alpha-1-acid glycoprotein, C-reactive protein, ferritin, histidine-rich protein 2, retinol binding protein 4, soluble transferrin receptor, and thyroglobulin.
View Article and Find Full Text PDFThe global COVID-19 pandemic has created an urgent demand for large numbers of inexpensive, accurate, rapid, point-of-care diagnostic tests. Analyte-based assays are suitably rapid and inexpensive and can be rapidly mass-produced, but for sufficiently accurate performance, they require highly optimized antibodies and assay conditions. We used an automated liquid handling system, customized to handle arrays of lateral flow (immuno)assays (LFAs) in a high-throughput screen, to identify anti-nucleocapsid antibodies that will perform optimally in an LFA.
View Article and Find Full Text PDFSevere acute respiratory coronavirus-2 (SARS-CoV-2) is a novel viral pathogen and therefore a challenge to accurately diagnose infection. Asymptomatic cases are common and so it is difficult to accurately identify infected cases to support surveillance and case detection. Diagnostic test developers are working to meet the global demand for accurate and rapid diagnostic tests to support disease management.
View Article and Find Full Text PDFEnteric viruses, such as poliovirus, are a leading cause of gastroenteritis, which causes 2-3 million deaths annually. Environmental surveillance of wastewater supplements clinical surveillance for monitoring enteric virus circulation. However, while many environmental surveillance methods require liquid samples, some at-risk locations utilize pit latrines with waste characterized by high solids content.
View Article and Find Full Text PDFBackground: Salmonella enterica remains a leading cause of food-borne diseases worldwide. Serotype information is important in food safety and public health activities to reduce the burden of salmonellosis. In the current study, two methods were used to determine serotypes of 111 strains of Salmonella isolated from poultry feces in Burkina Faso.
View Article and Find Full Text PDFTo facilitate treatment and limit transmission of tuberculosis (TB), new methods are needed to enable rapid and affordable diagnosis of the disease in high-burden low-resource settings. We have developed a prototype integrated nucleic acid testing device to detect Mycobacterium tuberculosis (M.tb) in sputum.
View Article and Find Full Text PDFEnvironmental enteric dysfunction (EED) is an intestinal disorder common among children in low-resource settings and is associated with increased risk of growth stunting, cognitive deficits, and reduced oral vaccine immunogenicity. The Micronutrient and EED Assessment Tool (MEEDAT) is a multiplexed immunoassay that measures biomarkers previously associated with child growth faltering and/or oral vaccine immunogenicity: intestinal fatty acid-binding protein (I-FABP), soluble CD14 (sCD14), insulin-like growth factor 1 (IGF-1), and fibroblast growth factor 21 (FGF21). MEEDAT also measures systemic inflammation (α1-acid glycoprotein, C-reactive protein), ferritin, soluble transferrin receptor, retinol binding protein 4, thyroglobulin, and Plasmodium falciparum antigenemia (histidine-rich protein 2).
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic has created an unprecedented need for rapid diagnostic testing to enable the efficient treatment and mitigation of COVID-19. The primary diagnostic tool currently employed is reverse transcription polymerase chain reaction (RT-PCR), which can have good sensitivity and excellent specificity. Unfortunately, implementation costs and logistical problems with reagents during the global SARS-CoV-2 pandemic have hindered its universal on demand adoption.
View Article and Find Full Text PDF