Silk fiber is formed by an assembly of fibrils. The fibrils can be isolated by a top-down mechanical process called microfibrillation and the fibrils are known as microfibrillated silk (MFS). The process involves chopping, milling, enzyme treatment and high-pressure homogenization.
View Article and Find Full Text PDFThe scale-up of laboratory procedures to industrial production is the main challenge standing between ideation and the successful introduction of novel materials into commercial products. Retaining quality while ensuring high per-batch production yields is the main challenge. Batch processing and other dynamic strategies that preserve product quality can be applied, but they typically involve a variety of experimental parameters and functions that are difficult to optimize because of interdependencies that are often antagonistic.
View Article and Find Full Text PDFIn materials science, the investigation of a large and complex experimental space is time-consuming and thus may induce bias to exclude potential solutions where little to no knowledge is available. This work presents the development of a highly hydrophobic material from an amphiphilic polymer through a novel, adaptive artificial intelligence approach. The hydrophobicity arises from the random packing of short polymer fibers into paper, a highly entropic, multistep process.
View Article and Find Full Text PDFThe discovery of processes for the synthesis of new materials involves many decisions about process design, operation, and material properties. Experimentation is crucial but as complexity increases, exploration of variables can become impractical using traditional combinatorial approaches. We describe an iterative method which uses machine learning to optimise process development, incorporating multiple qualitative and quantitative objectives.
View Article and Find Full Text PDF