Artificial neural networks (ANNs) are important building blocks in technical applications. They rely on noiseless continuous signals in stark contrast to the discrete action potentials stochastically exchanged among the neurons in real brains. We propose to bridge this gap with Spike-by-Spike (SbS) networks which represent a compromise between non-spiking and spiking versions of generative models.
View Article and Find Full Text PDFSelective attention allows focusing on only part of the incoming sensory information. Neurons in the extrastriate visual cortex reflect such selective processing when different stimuli are simultaneously present in their large receptive fields. Their spiking response then resembles the response to the attended stimulus when presented in isolation.
View Article and Find Full Text PDFImplantable neuronal interfaces to the brain are an important keystone for future medical applications. However, entering this field of research is difficult since such an implant requires components from many different areas of technology. Since the complete avoidance of wires is important due to the risk of infections and other long-term problems, means for wirelessly transmitting data and energy are a necessity which adds to the requirements.
View Article and Find Full Text PDFFront Syst Neurosci
September 2014
Recent experimental and theoretical work has established the hypothesis that cortical neurons operate close to a critical state which describes a phase transition from chaotic to ordered dynamics. Critical dynamics are suggested to optimize several aspects of neuronal information processing. However, although critical dynamics have been demonstrated in recordings of spontaneously active cortical neurons, little is known about how these dynamics are affected by task-dependent changes in neuronal activity when the cortex is engaged in stimulus processing.
View Article and Find Full Text PDFBrain-computer interfaces have been proposed as a solution for paralyzed persons to communicate and interact with their environment. However, the neural signals used for controlling such prostheses are often noisy and unreliable, resulting in a low performance of real-world applications. Here we propose neural signatures of selective visual attention in epidural recordings as a fast, reliable, and high-performance control signal for brain prostheses.
View Article and Find Full Text PDFSelective attention improves perception and modulates neuronal responses, but how attention-dependent changes of cortical activity improve the processing of attended objects is an open question. Changes in total signal strength or enhancements in signal-to-noise ratio have been proposed as putative mechanisms. However, it is still not clear whether, and to what extent, these processes contribute to the large perceptual improvements.
View Article and Find Full Text PDFThe speed and reliability of mammalian perception indicate that cortical computations can rely on very few action potentials per involved neuron. Together with the stochasticity of single-spike events in cortex, this appears to imply that large populations of redundant neurons are needed for rapid computations with action potentials. Here we demonstrate that very fast and precise computations can be realized also in small networks of stochastically spiking neurons.
View Article and Find Full Text PDFMany experiments have successfully demonstrated that prosthetic devices for restoring lost body functions can in principle be controlled by brain signals. However, stable long-term application of these devices, required for paralyzed patients, may suffer substantially from on-going signal changes for example adapting neural activities or movements of the electrodes recording brain activity. These changes currently require tedious re-learning procedures which are conducted and supervised under laboratory conditions, hampering the everyday use of such devices.
View Article and Find Full Text PDFHere, we derive optimal tuning functions for minimum mean square reconstruction from neural rate responses subjected to Poisson noise. The shape of these tuning functions strongly depends on the length T of the time window within which action potentials (spikes) are counted in order to estimate the underlying firing rate. A phase transition towards pure binary encoding occurs if the maximum mean spike count becomes smaller than approximately three.
View Article and Find Full Text PDF