Publications by authors named "David Ropartz"

Carrageenans are major gel forming polysaccharides in the extracellular matrix of the red macroalga Chondrus crispus. These galactans are made of linear chains of repetitive disaccharide motifs based on d-galactose residues alternately linked by β-1,4 and α-1,3 glycosidic bonds. A definite number of disaccharide motifs are known, based on their regular sulfations and the presence of a 3,6-anhydro bridge.

View Article and Find Full Text PDF

Plant cell walls constitute complex polysaccharidic/proteinaceous networks whose biosynthesis and dynamics implicate several cell compartments. The synthesis and remodeling of homogalacturonan pectins involve Golgi-localized methylation/acetylation and subsequent cell wall-localized demethylation/deacetylation. So far, TRICHOME BIREFRINGENCE-LIKE (TBL) family members have been described as Golgi-localized acetyltransferases targeting diverse hemicelluloses or pectins.

View Article and Find Full Text PDF

The synthesis of six model trisaccharides representative of galactomannans produced by lichens was performed through stereoselective glycosylation. These standards include linear and branched galactomannans bearing either galactofuranosyl or galactopyranosyl entities. The complete assignment of H and C signals for both forms of synthetically reduced oligosaccharides was performed.

View Article and Find Full Text PDF

Analysis of glycans remains a difficult task due to their isomeric complexity. Despite recent progress, determining monosaccharide ring size, a type of isomerism, is still challenging due to the high flexibility of the five-membered ring (also called furanose). Galactose is a monosaccharide that can be naturally found in furanose configuration in plant and bacterial polysaccharides.

View Article and Find Full Text PDF

Although carbohydrates are the most abundant biopolymers on Earth, there is currently no streamlined method to elucidate their complete sequence. Mass spectrometry (MS) alone is blind to many cases of isomerism and thus gives incomplete information for carbohydrates. Notably, the coexistence of numerous stereoisomeric monosaccharide subunits is of special concern.

View Article and Find Full Text PDF

Carbohydrates are ubiquitous in nature but are among the least conserved biomolecules in life. These biopolymers pose a particular challenge to analytical chemists because of their high diversity and structural heterogeneity. In addition, they contain many isomerisms that complicate their structural characterization, notably by mass spectrometry.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) currently represent the main class of therapeutic proteins. mAbs approved by regulatory agencies are selected from IgG1, IgG2, and IgG4 subclasses, which possess different interchain disulfide connectivities. Ion mobility coupled to native mass spectrometry (IM-MS) has emerged as a valuable approach to tackle the challenging characterization of mAbs' higher order structures.

View Article and Find Full Text PDF

The carrageenophyte red alga Chondrus crispus produces three family 16 glycoside hydrolases (CcGH16-1, CcGH16-2, and CcGH16-3). Phylogenetically, the red algal GH16 members are closely related to bacterial GH16 homologs from subfamilies 13 and 14, which have characterized marine bacterial β-carrageenase and β-porphyranase activities, respectively, yet the functions of these CcGH16 hydrolases have not been determined. Here, we first confirmed the gene locus of the ccgh16-3 gene in the alga to facilitate further investigation.

View Article and Find Full Text PDF

Filamentous fungi are keystone microorganisms in the regulation of many processes occurring on Earth, such as plant biomass decay and pathogenesis as well as symbiotic associations. In many of these processes, fungi secrete carbohydrate-active enzymes (CAZymes) to modify and/or degrade carbohydrates. Ten years ago, while evaluating the potential of a secretome from the maize pathogen Ustilago maydis to supplement lignocellulolytic cocktails, we noticed it contained many unknown or poorly characterized CAZymes.

View Article and Find Full Text PDF

Structural elucidation of plant cell wall xyloglucan through the analysis of enzymatically produced fragments requires detailed knowledge of enzymes hydrolytic mechanism. In this note, the mode of action and cleavage site of commercial recombinant xyloglucanases (GH74, Paenibacillus sp.) was studied on native and fluorescent-tagged tamarind xyloglucan.

View Article and Find Full Text PDF

Multispecific antibodies, which target multiple antigens at once, are emerging as promising therapeutic entities to offer more effective treatment than conventional monoclonal antibodies (mAbs). However, these highly complex mAb formats pose significant analytical challenges. We report here on the characterization of a trispecific antibody (tsAb), which presents two isomeric forms clearly separated and identified with size exclusion chromatography coupled to native mass spectrometry (SEC-nMS).

View Article and Find Full Text PDF

Within the apple pomace biorefinery cascade processing framework aiming at adding value to an agroindustrial waste, after pectin recovery, this study focused on hemicellulose. The structure of the major apple hemicellulose, xyloglucan (XyG), was assessed as a prerequisite to potential developments in industrial applications. DMSO-LiCl and 4 M KOH soluble hemicelluloses from pectin-extracted apple pomace were purified by anion exchange chromatography.

View Article and Find Full Text PDF

Accurate characterization of chemical structures is important to understand their underlying biological mechanisms and functional properties. Mass spectrometry (MS) is a popular tool but is not always sufficient to completely unveil all structural features. For example, although carbohydrates are biologically relevant, their characterization is complicated by numerous levels of isomerism.

View Article and Find Full Text PDF

Carbohydrates, in particular microbial glycans, are highly structurally diverse biomolecules, the recognition of which governs numerous biological processes. Of special interest, glycans of known monosaccharide composition feature multiple possible isomers, differentiated by the anomerism and position of their glycosidic linkages. Robust analytical tools able to circumvent this extreme structural complexity are increasing in demand to ensure not only the correct determination of naturally occurring glycans but also to support the rapid development of enzymatic and chemoenzymatic glycan synthesis.

View Article and Find Full Text PDF

Sulfated fucans from brown algae are a heterogeneous group of biologically active molecules. To learn more on their structure and to analyze and exploit their biological activities, there is a growing need to develop reliable and cost effective protocols for their preparation. In the present study, a brown alga Pelvetia canaliculata (Linnaeus) was used as a rich source of sulfated fucans.

View Article and Find Full Text PDF

The extracellular matrix of brown algae represents an abundant source of fucose-containing sulfated polysaccharides (FCSPs). FCSPs include sulfated fucans, essentially composed of fucose, and highly heterogeneous fucoidans, comprising various monosaccharides. Despite a range of potentially valuable biological activities, the structures of FCSPs are only partially characterized and enzymatic tools leading to their deconstruction are rare.

View Article and Find Full Text PDF

Enzyme engineering approaches have allowed to extend the collection of enzymatic tools available for synthetic purposes. However, controlling the regioselectivity of the reaction remains challenging, in particular when dealing with carbohydrates bearing numerous reactive hydroxyl groups as substrates. Here, we used a computer-aided design framework to engineer the active site of a sucrose-active [Formula: see text]-transglucosylase for the 1,2-cis-glucosylation of a lightly protected chemically synthesized tetrasaccharide, a common precursor for the synthesis of serotype-specific S.

View Article and Find Full Text PDF

Data organization through molecular networks has been used in metabolomics over the past years as a way to efficiently mine the massive amount of structural information produced by tandem mass spectrometry (MS). However, glycomics lags a step behind: carbohydrate structures involve numerous levels of isomerism, making MS and tandem MS blind to many key structural features of glycans. This roadblock can in part be alleviated with gas-phase ion mobility spectrometry (IMS), a method highly sensitive to isomerism.

View Article and Find Full Text PDF

Alkali and alkaline earth metal adducts of a branched glycan, XXXG, were analyzed with helium charge transfer dissociation (He-CTD) and low-energy collision-induced dissociation (LE-CID) to investigate if metalation would impact the type of fragments generated and the structural characterization of the analyte. The studied adducts included 1+ and 2+ precursors involving one or more of the cations: H , Na , K , Ca , and Mg . Regardless of the metal adduct, He-CTD generated abundant and numerous glycosidic and cross-ring cleavages that were structurally informative and able to identify the 1,4-linkage and 1,6-branching patterns.

View Article and Find Full Text PDF

Ultra-high-performance liquid chromatography (UHPLC) with charge transfer dissociation mass spectrometry (CTD-MS) is presented for the analysis of a mixture of complex sulfated oligosaccharides. The mixture contained kappa (κ), iota (ι), and lambda (λ) carrageenans that contain anhydro bridges, different degrees of sulfation ranging from one to three per dimer, different positioning of the sulfate groups along the backbone, and varying degrees of polymerization (DP) between 4 and 12. Optimization studies using standard mixtures of carrageenans helped establish the optimal conditions for online UHPLC-CTD-MS/MS analysis.

View Article and Find Full Text PDF

Summary: Oligator is software designed to assist scientists in their exploration of MS/MS experiments, especially for oligosaccharides bearing unreferenced chemical substitutions. Through a graphical interface, users have the total flexibility to build a candidate glycan structure and produce the corresponding theoretical MS/MS spectrum in accordance with the usual ion nomenclature. The structural information is saved using standard notations, in text format, which facilitates the capitalization and exchange of data as well as any other processing of the information.

View Article and Find Full Text PDF

Nature offers a huge diversity of glycosidic derivatives. Among numerous structural modulations, the nature of the ring size of hexosides may induce significant differences on both biological and physicochemical properties of the glycoconjugate of interest. On this assumption, we expect that small disaccharides bearing either a furanosyl entity or a pyranosyl residue would give a specific signature, even in the gas phase.

View Article and Find Full Text PDF

Carbohydrates are complex structures that still challenge analysts today because of their different levels of isomerism, notably the anomerism of the glycosidic bond. It has been shown recently that anomerism is preserved upon gas-phase fragmentation and that high-resolution ion mobility (IMS) can distinguish anomers. However, these concepts have yet to be applied to complex biological products.

View Article and Find Full Text PDF

Pectins are natural polysaccharides made from galacturonic acid residues, and they are widely used as an excipient in food and pharmaceutical industries. The degree of methyl-esterification, the monomeric composition, and the linkage pattern are all important factors that influence the physical and chemical properties of pectins, such as the solubility. This work focuses on the successful online coupling of charge transfer dissociation-mass spectrometry (CTD-MS) with ultrahigh-performance liquid chromatography (UHPLC) to differentiate isomers of oligogalacturonans derived from citrus pectins.

View Article and Find Full Text PDF

Flavobacteriia are important degraders in the marine carbon cycle, due to their ability to efficiently degrade complex algal polysaccharides. A novel exo-(α-1,3)-3,6-anhydro-D-galactosidase activity was recently discovered from a marine Flavobacteriia (Zobellia galactanivorans Dsij) on red algal carrageenan oligosaccharides. The enzyme activity is encoded by a gene found in the first described carrageenan-specific polysaccharide utilization locus (CarPUL) that codes for a family 129 glycoside hydrolase (GH129).

View Article and Find Full Text PDF