Publications by authors named "David Romo-Bucheli"

Introduction: The coronavirus disease 2019 (COVID-19) has become a significant public health problem worldwide. In this context, CT-scan automatic analysis has emerged as a COVID-19 complementary diagnosis tool allowing for radiological finding characterization, patient categorization, and disease follow-up. However, this analysis depends on the radiologist's expertise, which may result in subjective evaluations.

View Article and Find Full Text PDF

Cardiac cine-MRI is one of the most important diagnostic tools used to assess the morphology and physiology of the heart during the cardiac cycle. Nonetheless, the analysis on cardiac cine-MRI is poorly exploited and remains highly dependent on the observer's expertise. This work introduces an imaging cardiac disease representation, coded as an embedding vector, that fully exploits hidden mapping between the latent space and a generated cine-MRI data distribution.

View Article and Find Full Text PDF

Cardiac cine-MRI is one of the most important diagnostic tools for characterizing heart-related pathologies. This imaging technique allows clinicians to assess the morphology and physiology of the heart during the cardiac cycle. Nonetheless, the analysis on cardiac cine-MRI is highly dependent on the observer expertise and a high inter-reader variability is frequently observed.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (nAMD) is nowadays successfully treated with anti-VEGF substances, but inter-individual treatment requirements are vastly heterogeneous and currently poorly plannable resulting in suboptimal treatment frequency. Optical coherence tomography (OCT) with its 3D high-resolution imaging serves as a companion diagnostic to anti-VEGF therapy. This creates a need for building predictive models using automated image analysis of OCT scans acquired during the treatment initiation phase.

View Article and Find Full Text PDF

Diagnosis and treatment in ophthalmology depend on modern retinal imaging by optical coherence tomography (OCT). The recent staggering results of machine learning in medical imaging have inspired the development of automated segmentation methods to identify and quantify pathological features in OCT scans. These models need to be sensitive to image features defining patterns of interest, while remaining robust to differences in imaging protocols.

View Article and Find Full Text PDF

Early-stage estrogen receptor-positive (ER+) breast cancer (BCa) is the most common type of BCa in the United States. One critical question with these tumors is identifying which patients will receive added benefit from adjuvant chemotherapy. Nuclear pleomorphism (variance in nuclear shape and morphology) is an important constituent of breast grading schemes, and in ER+ cases, the grade is highly correlated with disease outcome.

View Article and Find Full Text PDF

The treatment and management of early stage estrogen receptor positive (ER+) breast cancer is hindered by the difficulty in identifying patients who require adjuvant chemotherapy in contrast to those that will respond to hormonal therapy. To distinguish between the more and less aggressive breast tumors, which is a fundamental criterion for the selection of an appropriate treatment plan, Oncotype DX (ODX) and other gene expression tests are typically employed. While informative, these gene expression tests are expensive, tissue destructive, and require specialized facilities.

View Article and Find Full Text PDF

Early stage estrogen receptor positive (ER+) breast cancer (BCa) treatment is based on the presumed aggressiveness and likelihood of cancer recurrence. Oncotype DX (ODX) and other gene expression tests have allowed for distinguishing the more aggressive ER+ BCa requiring adjuvant chemotherapy from the less aggressive cancers benefiting from hormonal therapy alone. However these tests are expensive, tissue destructive and require specialized facilities.

View Article and Find Full Text PDF

Medical diagnostics is often a multi-attribute problem, necessitating sophisticated tools for analyzing high-dimensional biomedical data. Mining this data often results in two crucial bottlenecks: 1) high dimensionality of features used to represent rich biological data and 2) small amounts of labelled training data due to the expense of consulting highly specific medical expertise necessary to assess each study. Currently, no approach that we are aware of has attempted to use active learning in the context of dimensionality reduction approaches for improving the construction of low dimensional representations.

View Article and Find Full Text PDF