Publications by authors named "David Rombaut"

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS.

View Article and Find Full Text PDF

Transcription factor Forkhead box P1 (FOXP1) belongs to the same protein family as the FOXOs that are well-known regulators of murine hematopoietic stem progenitor cell (HSPC) maintenance via dampening oxidative stress. FOXP1 and FOXOs can play opposite, or similar, roles depending on cell context; they can crossregulate each other's expression. In a previous study, we have shown that FOXP1 contributes to healthy human HSPC and acute myeloid leukemia (AML) cell growth.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed 113 cases of del(11q) MDS, highlighting features like a predominance in females, survival rates similar to other MDS cases, and a specific genetic deletion affecting key genes associated with hematopoiesis.
  • * Findings suggest that the loss of the CADM1 gene, along with other genetic mutations, may play a significant role in the development of del(11q) MDS, indicating its potential as
View Article and Find Full Text PDF

is the main causative agent of human malaria. During the intraerythrocytic development cycle, the morphology changes dramatically from circulating young rings to sequestered mature trophozoites and schizonts. Sequestered forms contribute to the pathophysiology of severe malaria as the infected erythrocytes obstruct the microvascular flow in deep organs and induce local inflammation.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) with ring sideroblasts are hematopoietic stem cell disorders with erythroid dysplasia and mutations in the splicing factor gene. Patients with MDS with mutations often accumulate excessive tissue iron, even in the absence of transfusions, but the mechanisms that are responsible for their parenchymal iron overload are unknown. Body iron content, tissue distribution, and the supply of iron for erythropoiesis are controlled by the hormone hepcidin, which is regulated by erythroblasts through secretion of the erythroid hormone erythroferrone (ERFE).

View Article and Find Full Text PDF

Background: PfEMP1 is the major protein from parasitic origin involved in the pathophysiology of severe malaria, and PfEMP1 domain subtypes are associated with the infection outcome. In addition, PfEMP1 variability is endless and current publicly available protein repositories do not reflect the high diversity of the sequences of PfEMP1 proteins. The identification of PfEMP1 protein sequences expressed with samples remains challenging.

View Article and Find Full Text PDF