Soil C is the largest C pool in forest ecosystems that contributes to C sequestration and mitigates climate change. Tree diversity enhances forest productivity, so diversifying the tree species composition, notably in managed forests, could increase the quantity of organic matter being transferred to soils and alter other soil properties relevant to the C cycle.A ten-year-old tree diversity experiment was used to study the effects of tree identity and diversity (functional and taxonomic) on soils.
View Article and Find Full Text PDFAlkaline residuals, such as wood ash and lime mud generated from pulp and paper mills, could be recycled as liming agents in sugar maple (Acer saccharum Marsh.) forests affected by soil acidification. The objectives of this study were (1) to evaluate soil chemistry, in particular soil acidity, after the application of three alkaline residuals from the pulp and paper industry, and (2) to determine if these alkaline residuals altered soil greenhouse gas (GHG) emissions as a result of the change in soil pH or due to their chemical composition.
View Article and Find Full Text PDFSatisfying the nutritional needs of a growing population whilst limiting environmental repercussions will require sustainable intensification of agriculture. We argue that intercropping, which is the simultaneous production of multiple crops on the same area of land, could play an essential role in this intensification. We carried out the first global meta-analysis on the multifaceted benefits of intercropping.
View Article and Find Full Text PDFAgroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study.
View Article and Find Full Text PDFTree-based intercropping is considered to be a potentially useful land use system for mitigating negative environmental impacts from intensive agriculture such as nutrient leaching and greenhouse gas emissions. Rapid early growth of trees is critical for rapidly accruing environmental benefits provided by the trees. We tested the hypothesis that intercropping increases the growth and nutrient status of young hybrid poplars (Populus spp.
View Article and Find Full Text PDF