Publications by authors named "David Ritzer"

Transferring record power conversion efficiency (PCE) >25% of spin coated perovskite solar cells (PSCs) from the laboratory scale to large-area photovoltaic modules requires significant advances in scalable fabrication techniques. In this work, we demonstrate the fundamental interrelation between drying dynamics of slot-die coated precursor solution thin films and the quality of resulting slot-die coated gas-quenched polycrystalline perovskite thin films. Well-defined drying conditions are established using a temperature-stabilized, movable table and a flow-controlled, oblique impinging slot nozzle purged with nitrogen.

View Article and Find Full Text PDF

Narrow-band gap (NBG) Sn-Pb perovskites with band gaps of ∼1.2 eV, which correspond to a broad photon absorption range up to ∼1033 nm, are highly promising candidates for bottom solar cells in all-perovskite tandem photovoltaics. To exploit their potential, avoiding optical losses in the top layer stacks of the tandem configuration is essential.

View Article and Find Full Text PDF

Advanced optical concepts, making use of tailored microstructured front cover glasses, promise to reduce the losses encountered with encapsulated solar modules. However, implementing optical concepts into the conventional architecture of encapsulated solar modules and simultaneously maintaining high durability represent a severe technological challenge. The liquid glass technique offers a route to meet this challenge by enabling the implementation of these optical concepts directly into the durable front cover glass of solar modules.

View Article and Find Full Text PDF