Technological advances in studying the human microbiome in depth have enabled the identification of microbial signatures associated with health and disease. This confirms the crucial role of microbiota in maintaining homeostasis and the host health status. Nowadays, there are several ways to modulate the microbiota composition to effectively improve host health; therefore, the development of therapeutic treatments based on the gut microbiota is experiencing rapid growth.
View Article and Find Full Text PDFIn humans, many diseases are associated with alterations in gut microbiota, namely increases or decreases in the abundance of specific bacterial groups. One example is the genus Faecalibacterium. Numerous studies have underscored that low levels of Faecalibacterium are correlated with inflammatory conditions, with inflammatory bowel disease (IBD) in the forefront.
View Article and Find Full Text PDFThough best known for its role in oxidative DNA damage repair, apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein that regulates multiple host responses during oxidative stress, including the reductive activation of transcription factors. As knockout of the APE1-encoding gene, , is embryonically lethal, we sought to create a viable model with generalized inhibition of APE1 expression. A hypomorphic (HM) mouse with decreased APE1 expression throughout the body was generated using a construct containing a neomycin resistance () cassette knocked into the site.
View Article and Find Full Text PDFDomesticated horses live under different conditions compared with their extinct wild ancestors. While housed, medicated and kept on a restricted source of feed, the microbiota of domesticated horses is hypothesized to be altered. We assessed the fecal microbiome of 57 domestic and feral horses from different locations on three continents, observing geographical differences.
View Article and Find Full Text PDFPreterm birth is one of the main health problems encountered in the neonatal period, especially because it is also the first cause of death in the critical 1st month of life and the second in children under 5 years of age. Not only preterm birth entails short term health risks due to low weight and underdeveloped organs, but also increases the risk of suffering from non-transmissible diseases in the long term. To date, it is known that medical conditions and lifestyle factors could increase the risk of preterm birth, but the molecular mechanisms that control this process remain unclear.
View Article and Find Full Text PDFOver the last several years, many advances have been made in understanding the role of bacteria in the pathogenesis of gastrointestinal cancers. Beginning with being recognized as the first bacterial carcinogen and the causative agent of most gastric cancers, more recent studies have examined the role of enteric microbes in colorectal cancer. In the digestive tract, these communities are numerous and have a complex interrelationship with local immune/inflammatory responses that impact the health of the host.
View Article and Find Full Text PDFThe establishment of gut microbiota has been proven to be impacted by several factors during pregnancy, delivery, and neonate periods. The body of evidence describing C-section delivery (CSD) as one of the most disruptive events during early life has expanded in recent years, concluding that CSD results in a drastic change in microbiota establishment patterns. When comparing the gut microbiota composition of CSD babies with vaginally delivered (VD) babies, the former show a microbiome that closely resembles that found in the environment and the mother's skin, while VD babies show a microbiome more similar to the vaginal microbiome.
View Article and Find Full Text PDFShort-chain fatty acids (SCFA) are the main bacterial products of the catabolism of carbohydrates and proteins in the gut, and their role is essential in host-microbiota interactions. Acetic, propionic, and butyric acids are the major SCFA produced in the gut, and they have been extensively studied. In contrast, branched short-chain fatty acids (BCFA), mainly isovaleric and isobutyric acids, are produced in less amounts and their fecal levels in different human groups, intestinal microbial producing populations, and influence on health are insufficiently known.
View Article and Find Full Text PDFThe microbial community inhabiting our intestine, known as 'microbiota', and the ensemble of their genomes (microbiome) regulate important functions of the host, being essential for health maintenance. The recent development of next-generation sequencing (NGS) methods has greatly facilitated the study of the microbiota and has contributed to evidence of the strong influence exerted by age and diet. However, the precise way in which the diet and its components modify the functionality of the intestinal microbiome is far from being completely known.
View Article and Find Full Text PDFMechanistic features that characterize the interaction and inhibition of the food-borne pathogen Listeria monocytogenes by members of the genus Bifidobacterium still remain unclear. In the present work, we tried to shed light on the influence that co-cultivation of L. monocytogenes with Bifidobacterium breve may exert on both microorganisms and on virulence of the pathogen.
View Article and Find Full Text PDFBackground: Bacteroides fragilis is the most frequent species at the human intestinal mucosal surface, it contributes to the maturation of the immune system although is also considered as an opportunistic pathogen. Some Bifidobacterium strains produce exopolysaccharides (EPS), complex carbohydrate polymers that promote changes in the metabolism of B. fragilis when this microorganism grows in their presence.
View Article and Find Full Text PDFA better understanding of the interactions among intestinal microbes is needed to decipher the complex cross talk that takes place within the human gut. Bacteroides and Bifidobacterium genera are among the most relevant intestinal bacteria, and it has been previously reported that coculturing of these 2 microorganisms affects their survival. Therefore, coculturing of Bifidobacterium longum NB667 and Bacteroides fragilis DSMZ2151 was performed with the aim of unravelling the mechanisms involved in their interaction.
View Article and Find Full Text PDFThe colon is inhabited by a dense population of microorganisms, the so-called "gut microbiota," able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation.
View Article and Find Full Text PDFCross-feeding is an important metabolic interaction mechanism of bacterial groups inhabiting the human colon and includes features such as the utilization of acetate by butyrate-producing bacteria as may occur between Bifidobacterium and Faecalibacterium genera. In this study, we assessed the utilization of different carbon sources (glucose, starch, inulin and fructooligosaccharides) by strains of both genera and selected the best suited combinations for evidencing this cross-feeding phenomenon. Co-cultures of Bifidobacterium adolescentis L2-32 with Faecalibacterium prausnitzii S3/L3 with fructooligosaccharides as carbon source, as well as with F.
View Article and Find Full Text PDFBacteroides is among the most abundant microorganism inhabiting the human intestine. They are saccharolytic bacteria able to use dietary or host-derived glycans as energy sources. Some Bacteroides fragilis strains contribute to the maturation of the immune system but it is also an opportunistic pathogen.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2013
Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B.
View Article and Find Full Text PDF