Lots of damaged fiber-reinforced plastic (FRP) components are replaced by new components instead of repairing. Furthermore, only very labor-intensive repair methods are available on the market to fully restore the integrity of the structure. This requires a high level of experience or, alternatively, very cost-intensive technology, such as the use of computer tomography and robotics.
View Article and Find Full Text PDFCarbon fibres (CF) are used in CF reinforced plastic (CFRP) components. However, waste from CF yarn trim, CFRP and the end of life (EOL) CFRP structures will cause a recycling challenge in the next decades because of strict environmental regulations. Currently, recycling is carried out almost entirely by the use of pyrolysis to regain CF as a valuable resource.
View Article and Find Full Text PDFToday, numerous carbon fiber (CF) reinforced plastic (CFRP) components are in continuous usage under harsh environmental conditions. New components often replace damaged structural parts in safety-critical applications. In addition to this, there is also no effective repair method to initially restore the mechanics of these structures using dry fiber material.
View Article and Find Full Text PDF