A comprehensive study of microwave (MW) activated B2H6/CH4/Ar/H2 plasmas used for the chemical vapor deposition of B-doped diamond is reported. Absolute column densities of ground state B atoms, electronically excited H(n = 2) atoms, and BH, CH, and C2 radicals have been determined by cavity ring down spectroscopy, as functions of height (z) above a molybdenum substrate and of the plasma process conditions (B2H6, CH4, and Ar partial pressures; total pressure, p; and supplied MW power, P). Optical emission spectroscopy has also been used to explore variations in the relative densities of electronically excited H atoms, H2 molecules, and BH, CH, and C2 radicals, as functions of the same process conditions.
View Article and Find Full Text PDFThis paper describes a three-pronged study of microwave (MW) activated B(2)H(6)/Ar/H(2) plasmas as a precursor to diagnosis of the B(2)H(6)/CH(4)/Ar/H(2) plasmas used for the chemical vapor deposition of B-doped diamond. Absolute column densities of B atoms and BH radicals have been determined by cavity ring-down spectroscopy as a function of height (z) above a molybdenum substrate and of the plasma process conditions (B(2)H(6) and Ar partial pressures, total pressure, and supplied MW power). Optical emission spectroscopy has been used to explore variations in the relative densities of electronically excited BH, H, and H(2) species as a function of the same process conditions and of time after introducing B(2)H(6) into a pre-existing Ar/H(2) plasma.
View Article and Find Full Text PDF