Publications by authors named "David R Spiciarich"

: Mutations in the colony-stimulating factor 3 receptor (CSF3R) have been identified in the vast majority of patients with chronic neutrophilic leukemia and are present in other kinds of leukemia, such as acute myeloid leukemia. Here, we studied the function of novel germline variants in CSF3R at amino acid N610. These N610 substitutions were potently oncogenic and activated the receptor independently of its ligand GCSF.

View Article and Find Full Text PDF

Sialylated glycans are found at elevated levels in many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to the cancer cell-surface sialylation are not well characterized, specifically in bona fide human disease tissue. Metabolic and bioorthogonal labeling methods have previously enabled the enrichment and identification of sialoglycoproteins from cultured cells and model organisms.

View Article and Find Full Text PDF

Cell surface glycosylation is thought to be involved in barrier function against microbes at mucosal surfaces. Previously we showed that the epithelium of healthy mouse corneas becomes vulnerable to adhesion if it lacks the innate defense protein MyD88 (myeloid differentiation primary response gene 88), or after superficial injury by blotting with tissue paper. Here we explored their effect on corneal surface glycosylation using a metabolic label, tetra-acetylated -azidoacetylgalactosamine (AcGalNAz).

View Article and Find Full Text PDF

Protein glycosylation is a heterogeneous post-translational modification (PTM) that plays an essential role in biological regulation. However, the diversity found in glycoproteins has undermined efforts to describe the intact glycoproteome via mass spectrometry (MS). We present IsoTaG, a mass-independent chemical glycoproteomics platform for characterization of intact, metabolically labeled glycopeptides at the whole-proteome scale.

View Article and Find Full Text PDF

Metabolic labeling of azido sugars combined with two-photon fluorescence lifetime imaging microscopy enables the visualization of specific glycoforms of endogenous proteins. This method can be utilized to detect glycosylated proteins in both cell culture and intact human tissue slices.

View Article and Find Full Text PDF

Directed proteomics applies mass spectrometry analysis to a subset of information-rich proteins. Here we describe a method for targeting select proteins by chemical modification with a tag that imparts a distinct isotopic signature detectable in a full-scan mass spectrum. Termed isotopic signature transfer and mass pattern prediction (IsoStamp), the technique exploits the perturbing effects of a dibrominated chemical tag on a peptide's mass envelope, which can be detected with high sensitivity and fidelity using a computational method.

View Article and Find Full Text PDF