Publications by authors named "David R Schiel"

Compensatory density-dependent (DD) processes play an integral role in fisheries management by underpinning fundamental population demographics. However, DD processes are often assessed only for specific life stages, likely resulting in misleading evaluations of population limitations. Here, we assessed the relative roles of intra- and inter-life stage DD interactions in shaping the population dynamics of perennial freshwater fish with demographically open populations.

View Article and Find Full Text PDF
Article Synopsis
  • Seismic events, like the November 2016 earthquake near Kaikōura, New Zealand, led to significant coastal uplift and subsequent environmental stress for intertidal marine organisms, especially foundational seaweeds.
  • Following these disturbances, including marine heatwaves in 2017/18, there was a drastic loss of the dominant southern bull kelp, which suggests that an ecological threshold was crossed, preventing recovery.
  • As a result, alternative seaweed species, which were previously subordinate, became more abundant, leading to changes in ecological interactions and support for different marine species, indicating long-lasting shifts in marine ecosystems.
View Article and Find Full Text PDF

With the global decline of freshwater fishes, quantifying the body size-specific habitat use of vulnerable species is crucial for accurately evaluating population health, identifying the effects of anthropogenic stressors, and directing effective habitat restoration. Populations of New Zealand's endemic kōkopu species (Galaxias fasciatus, G. argenteus, and G.

View Article and Find Full Text PDF

Marine heatwaves (MHWs) can cause dramatic changes to ecologically, culturally, and economically important coastal ecosystems. To date, MHW studies have focused on geographically isolated regions or broad-scale global oceanic analyses, without considering coastal biogeographical regions and seasons. However, to understand impacts from MHWs on diverse coastal communities, a combined biogeographical-seasonal approach is necessary, because (1) bioregions reflect community-wide temperature tolerances and (2) summer or winter heatwaves likely affect communities differently.

View Article and Find Full Text PDF

Habitat heterogeneity is considered a primary causal driver underpinning patterns of diversity, yet the universal role of heterogeneity in structuring biodiversity is unclear due to a lack of coordinated experiments testing its effects across geographic scales and habitat types. Furthermore, key species interactions that can enhance heterogeneity, such as facilitation cascades of foundation species, have been largely overlooked in general biodiversity models. Here, we performed 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which variation in biodiversity is explained by three axes of habitat heterogeneity: the amount of habitat, its morphological complexity, and capacity to provide ecological resources (e.

View Article and Find Full Text PDF

Despite the demonstrated benefits of marine protected areas, there has been relatively little dialogue about freshwater protected areas (FPAs) even though some have been established to protect freshwater species from recreational and commercial fishers. After populations recover from fishing pressure, abundances and densities of formerly fished species increase, and we should therefore expect changes in demographic traits compared to those in exploited populations. To test this, we used capture-mark-recapture data for 10 populations across a density gradient mediated by different degrees of fishery closure.

View Article and Find Full Text PDF

Vegetated coastal ecosystems (VCEs) are in global decline and sensitive to climate change; yet may also assist its mitigation through high rates of 'blue' carbon sequestration and storage. Alterations of relative sea-level (RSL) are pervasive drivers of change that reflect the interaction between tidal inundation regimes and ground surface elevation. Although many studies have investigated sediment accretion within VCEs, relatively few have addressed spatiotemporal patterns of resilience in response to RSL change.

View Article and Find Full Text PDF

Understanding how biodiversity and its components of alpha, beta, and gamma vary over spatial and temporal scales and across communities is crucial to mitigating stressors of ecosystems. Marine communities present several problems in partitioning diversity over fine spatial scales, such as tidal zones, and temporal scales relating to seasonal occurrences of species and recovery responses to impacts. This study uses an experimental approach to test disturbance effects on beta diversity in algal communities in southern New Zealand.

View Article and Find Full Text PDF

It has long been recognized that primary foundation species (FS), such as trees and seagrasses, enhance biodiversity. Among the species facilitated are secondary FS, including mistletoes and epiphytes. Case studies have demonstrated that secondary FS can further modify habitat-associated organisms ('inhabitants'), but their net effects remain unknown.

View Article and Find Full Text PDF

Global declines of macroalgal beds in coastal waters have prompted a plethora of studies attempting to understand the drivers of change within dynamic nearshore ecosystems. Photosynthetic measurements are good tools for assessing the consequences of numerous stressors of macroalgae, but there is somewhat of a disconnection between studies that focus on organism-specific ecophysiological responses and those that address causes and consequences of shifts in macroalgal productivity. Our goal is to highlight the applications of two complementary tools for measuring photosynthesis-variable chlorophyll a fluorescence and photorespirometry-and provide guidance for the integration of physiology and ecology to understand the drivers of change in macroalgal communities.

View Article and Find Full Text PDF

Many studies have documented habitat cascades where two co-occurring habitat-forming species control biodiversity. However, more than two habitat-formers could theoretically co-occur. We here documented a sixth-level habitat cascade from the Avon-Heathcote Estuary, New Zealand, by correlating counts of attached inhabitants to the size and accumulated biomass of their biogenic hosts.

View Article and Find Full Text PDF

Phototrophs underpin most ecosystem processes, but to do this they need sufficient light. This critical resource, however, is compromised along many marine shores by increased loads of sediments and nutrients from degraded inland habitats. Increased attenuation of total irradiance within coastal water columns due to turbidity is known to reduce species' depth limits and affect the taxonomic structure and architecture of algal-dominated assemblages, but virtually no attention has been paid to the potential for changes in spectral quality of light energy to impact production dynamics.

View Article and Find Full Text PDF

Rising global temperatures caused by human-mediated change has already triggered significant responses in organismal physiology, distribution and ecosystem functioning. Although the effects of rising temperature on the physiology of individual organisms are well understood, the effect on community-wide processes has remained elusive. The fixation of carbon via primary productivity is an essential ecosystem function and any shifts in the balance of primary productivity and respiration could alter the carbon balance of ecosystems.

View Article and Find Full Text PDF

Numerous studies have applied genetic tools to the identification of source populations and transport pathways for invasive species. However, there are many gaps in the knowledge obtained from such studies because comprehensive and meaningful spatial sampling to meet these goals is difficult to achieve. Sampling populations as they arrive at the border should fill the gaps in source population identification, but such an advance has not yet been achieved with genetic data.

View Article and Find Full Text PDF

Macroalgal assemblages are some of the most productive systems on earth and they contribute significantly to nearshore ecosystems. Globally, macroalgal assemblages are increasingly threatened by anthropogenic activities such as sedimentation, eutrophication and climate change. Despite this, very little research has considered the potential effects of canopy loss on primary productivity, although the literature is rich with evidence showing the ecological effects of canopy disturbance.

View Article and Find Full Text PDF

Anthropogenic impacts, including urbanization, deforestation, farming, and livestock grazing have altered riparian margins worldwide. One effect of changes to riparian vegetation is that the ground-level light, temperature, and humidity environment has also been altered. Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, lays eggs almost exclusively beneath riparian vegetation in tidally influenced reaches of rivers.

View Article and Find Full Text PDF

Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat).

View Article and Find Full Text PDF

The solitary ascidian Styela clava Herdman, 1882 is considered to be native to Japan, Korea, northern China and the Russian Federation in the NW Pacific, but it has spread globally over the last 80 years and is now established as an introduced species on the east and west coasts of North America, Europe, Australia and New Zealand. In eastern Canada it reaches sufficient density to be a serious pest to aquaculture concerns. We sequenced a fragment of the cytochrome oxidase subunit I mitochondrial gene (COI) from a total of 554 individuals to examine the genetic relationships of 20 S.

View Article and Find Full Text PDF

Many species traverse multiple habitats across ecosystems to complete their life histories. Degradation of critical, life stage-specific habitats can therefore lead to population bottlenecks and demographic deficits in sub-populations. The riparian zone of waterways is one of the most impacted areas of the coastal zone because of urbanisation, deforestation, farming and livestock grazing.

View Article and Find Full Text PDF

Species interactions come in a variety of forms, from weak to strong, and negative or positive, each with unique consequences for local community structure. However, interactions depend on several biotic, abiotic and scale-dependent variables that make their magnitude and direction difficult to predict. Here, we quantify the relative impacts of multiple factors on species interactions for a diverse array of intertidal organisms, using our own experiments across a range of environments in New Zealand and North America.

View Article and Find Full Text PDF

Consumers that forage across habitats can affect communities by altering the abundance and distribution of key species. In marine communities, studies of trophic interactions have generally focused on the effects of herbivorous and predatory invertebrates on benthic algae and mussel populations. However, large mobile consumers that move across habitats, such as fishes, can strongly affect community dynamics through consumption of habitat-dominating species, but their effects often vary over environmental gradients.

View Article and Find Full Text PDF

The redox electrochemistry of hydroquinone and Cu2+-, Ni2+-, and Fe3+-hydroquinone complexes immobilized at the SAM interface has been studied in aqueous solutions with pH 5 to 12 using cyclic voltammetry. Self-assembled monolayers were constructed with terminal hydroquinone residues designed to model marine adhesive proteins that use the DOPA (3,4-dihydroxyphenylalanine) moiety. Coordination of metal to the hydroquinone group results in a shift to the ligand oxidation potential, with the value for Delta E p,a dependent on the solution pH and identity of the metal.

View Article and Find Full Text PDF

Cook Strait, which separates the North and South Island of New Zealand, has been a transient, but re-occurring feature of the New Zealand land mass throughout the Pleistocene, maintaining its current width and depth for the past 5000 years. Historic land fragmentation coupled with the complex hydrography of the Greater Cook Strait region has created both biogeographic and phylogeographic disjunctions between the North and South Island in several marine species. Here we use mitochondrial cytochrome b DNA sequences of three endemic intertidal limpets, Cellana ornata, Cellana radians and Cellana flava to assess intraspecific phylogeographic patterns across Cook Strait and to look for interspecific concordance of ecological and evolutionary processes among closely related taxa.

View Article and Find Full Text PDF