Publications by authors named "David R Piper"

is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communication disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glutamatergic transmission.

View Article and Find Full Text PDF

Neurons created from human induced pluripotent stem cells (hiPSCs) provide the capability of identifying biological mechanisms that underlie brain disorders. IPSC-derived human neurons, or iNs, hold promise for advancing precision medicine through drug screening, though it remains unclear to what extent iNs can support early-stage drug discovery efforts in industrial-scale screening centers. Despite several reported approaches to generate iNs from iPSCs, each suffer from technological limitations that challenge their scalability and reproducibility, both requirements for successful screening assays.

View Article and Find Full Text PDF

Polo-like kinase 4 (PLK4) is a cell cycle-regulated protein kinase (PK) recruited at the centrosome in dividing cells. Its overexpression triggers centrosome amplification, which is associated with genetic instability and carcinogenesis. In previous work, we established that PLK4 is overexpressed in pediatric embryonal brain tumors (EBT).

View Article and Find Full Text PDF

Rhabdoid tumors (RT) are highly aggressive and vastly unresponsive embryonal tumors. They are the most common malignant CNS tumors in infants below 6 months of age. Medulloblastomas (MB) are embryonal tumors that arise in the cerebellum and are the most frequent pediatric malignant brain tumors.

View Article and Find Full Text PDF

Purpose: Malignant rhabdoid tumors (MRTs) are deadly embryonal tumors of the infancy. With poor survival and modest response to available therapies, more effective and less toxic treatments are needed. We hypothesized that a systematic screening of the kinome will reveal kinases that drive rhabdoid tumors and can be targeted by specific inhibitors.

View Article and Find Full Text PDF

Phosphoinositide 3-OH kinase (PI3K) regulates a number of developmental and physiologic processes in skeletal muscle; however, the contributions of individual PI3K p110 catalytic subunits to these processes are not well-defined. To address this question, we investigated the role of the 110-kDa PI3K catalytic subunit β (p110β) in myogenesis and metabolism. In C2C12 cells, pharmacological inhibition of p110β delayed differentiation.

View Article and Find Full Text PDF

The life-threatening consequences of acquired, or drug-induced, long QT syndrome due to block of the human ether-a-go-go-related gene (hERG) channel are well appreciated and have been the cause of several drugs being removed from the market in recent years because of patient death. In the last decade, the propensity for block of the hERG channel by a diverse and expanding set of compounds has led to the requirement that all new drugs be tested for hERG channel block in a functional patch-clamp assay. Because of the need to identify potential hERG blockers early in the discovery process, radiometric hERG binding assays are preferred over patch-clamp assays for compound triage, because of relative advantages in speed and cost.

View Article and Find Full Text PDF

HERG1 K(+) channels are critical for modulating the duration of the cardiac action potential. The role of hERG1 channels in maintaining electrical stability in the heart derives from their unusual gating properties: slow activation and fast inactivation. HERG1 channel inactivation is intrinsically voltage sensitive and is not coupled to activation in the same way as in the Shaker family of K(+) channels.

View Article and Find Full Text PDF

A key unresolved question regarding the basic function of voltage-gated ion channels is how movement of the voltage sensor is coupled to channel opening. We previously proposed that the S4-S5 linker couples voltage sensor movement to the S6 domain in the human ether-a'-go-go-related gene (hERG) K+ channel. The recently solved crystal structure of the voltage-gated Kv1.

View Article and Find Full Text PDF

Objective: We describe a genetic basis for atrial fibrillation and short QT syndrome in utero. Heterologous expression of the mutant channel was used to define the physiological consequences of the mutation.

Methods: A baby girl was born at 38 weeks after induction of delivery that was prompted by bradycardia and irregular rythm.

View Article and Find Full Text PDF

The critical role of hERG in the maintenance of normal cardiac electrical activity derives from its unusual gating properties: slow channel activation and fast inactivation. To characterize voltage sensor movement associated with slow activation and fast inactivation, we measured gating currents from wild-type and mutant hERG channels. Fast and slow gating components were observed that differed 100-fold in their kinetics.

View Article and Find Full Text PDF

Slow activation and rapid C-type inactivation produce inward rectification of the current-voltage relationship for human ether-a'-go-go-related gene (hERG) channels. To characterize the voltage sensor movement associated with hERG activation and inactivation, we performed an Ala scan of the 32 amino acids (Gly(514)-Tyr(545)) that comprise the S4 domain and the flanking S3-S4 and S4-S5 linkers. Gating and ionic currents of wild-type and mutant channels were measured using cut-open oocyte Vaseline gap and two microelectrode voltage clamp techniques to determine the voltage dependence of charge movement, activation, and inactivation.

View Article and Find Full Text PDF

HERG (human ether-a-go-go-related gene) encodes a delayed rectifier K+ channel vital to normal repolarization of cardiac action potentials. Attenuation of repolarizing K+ current caused by mutations in HERG or channel block by common medications prolongs ventricular action potentials and increases the risk of arrhythmia and sudden death. The critical role of HERG in maintenance of normal cardiac electrical activity derives from its unusual gating properties.

View Article and Find Full Text PDF

Activation of pacemaker channels underlie the spontaneous diastolic depolarization of sinoatrial node cells in the heart. Four similar genes encoding these hyperpolarization-activated, cyclic nucleotide-gated channels were recently cloned and subsequently named HCN1-4. Here we review the physiological role of HCN channels and recent findings regarding mechanisms of channel gating.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: