Publications by authors named "David R Maass"

The translation initiation machinery is emerging as an important target for therapeutic intervention, with potential in the treatment of cancer, viral infections, and muscle wasting. Amongst the targets for pharmacological control of translation initiation is the eukaryotic initiation factor 4A (eIF4A), an RNA helicase that is essential for cap-dependent translation initiation. We set out to explore the system-wide impact of a reduction of functional eIF4A.

View Article and Find Full Text PDF

Basal ER stress occurs when proteins misfold in normal physiological conditions and are corrected by the unfolded protein response (UPR). Elevated ER stress occurs when misfolding is refractory as found in numerous diseases such as atherosclerosis, Type II diabetes and some cancers. In elevated ER stress it is unclear whether cells utilise the same or different networks of genes as in basal levels of ER stress.

View Article and Find Full Text PDF

The natural product pateamine A (pateamine) from the sponge Mycale hentscheli is active against a wide range of dividing cells and has been shown to inhibit the functions of the eukaryotic initiation factor 4A (eIF4A). We have identified that pateamine is additionally able to modulate the formation of actin filaments and microtubules in vitro but at higher concentrations than required for inhibition of eIF4A. Cell cycle analysis confirmed that actin and tubulin are not major mediators of the cellular activity of pateamine.

View Article and Find Full Text PDF

The pleiotropic drug response (PDR) or multidrug resistance (MDR) are cellular defence mechanisms present in all species to deal with potential toxicity from environmental small molecule toxins or bioactives. The rapid induction of MDR by xenobiotics in mammalian cells and PDR in budding yeast (S. cerevisiae) has been well studied but how pathway specificity is achieved across different structural classes of xenobiotics is not well understood.

View Article and Find Full Text PDF

Baker's yeast, Saccharomyces cerevisiae, has significant sequence conservation with a core subset of mammalian proteins and can serve as a model for disease processes. The aim of this study was to determine whether yeast could be used as a model system to identify new agents that interact with the laulimalide-peloruside binding site on β-tubulin. Agents that bind to this site cause stabilization of microtubules and interfere with cell division.

View Article and Find Full Text PDF

We developed a procedure for automated confocal microscopy to image the effect of the non-essential yeast gene deletion set on the localisation of the plasma membrane GFP-labelled protein Mrh1p-GFP. To achieve this it was necessary to devise an expression system expressing Redstar2 RFP-fluorescence specifically in the nucleus, mCherry RFP at a lower intensity in the cytoplasm and Mrh1p-GFP in the plasma membrane. This fluorescence labelling scheme utilising specifically designed image analysis scripts allowed automated segmentation of the cells into sub-regions comprising nuclei, cytoplasm and cell-surface.

View Article and Find Full Text PDF

The carbohydrate larval antigen, CarLA, is present on the exposed surface of all strongylid nematode infective L3 larvae tested, and antibodies against CarLA can promote rapid immune rejection of incoming Trichostrongylus colubriformis larvae in sheep. A library of ovine recombinant single chain Fv (scFv) antibody fragments, displayed on phage, was prepared from B cell mRNA of field-immune sheep. Phage displaying scFvs that bind to the surface of living exsheathed T.

View Article and Find Full Text PDF

Recombinant single domain antibody fragments (VHHs) that derive from the unusual camelid heavy chain only IgG class (HCAbs) have many favourable properties compared with single-chain antibodies prepared from conventional IgG. As a result, VHHs have become widely used as binding reagents and are beginning to show potential as therapeutic agents. To date, the source of VHH genetic material has been camels and llamas despite their large size and limited availability.

View Article and Find Full Text PDF

Although gastrointestinal nematode parasites are a major human and veterinary health problem, little is known about how the host is sometimes able to mount an effective immune rejection response. In previous work, we identified a carbohydrate larval surface antigen (CarLA) as the target of mucosal antibodies that can elicit rejection of Trichostrongylus colubriformis L3s in sheep. Here we characterise the natural mucosal antibody responses to L3s from three major strongylid gastrointestinal parasites of sheep, Trichostrongylus colubriformis, Haemonchus contortus and Teladorsagia circumcincta.

View Article and Find Full Text PDF

Allergens were identified from the gastrointestinal nematode of sheep, Trichostrongylus colubriformis, by probing Western blots of infective larvae (third stage) somatic antigen with IgE purified from the serum of sheep grazed on worm contaminated pasture. A 31 kDa allergen was frequently recognised by sera from immune sheep, particularly those deriving from a line that has been genetically selected over 23 years for parasite resistance. Using a proteomic approach, the 31 kDa allergen was identified as an aspartyl protease inhibitor homologue.

View Article and Find Full Text PDF