The risks of indoor skydiving have not been extensively studied. Indoor skydiving facilities are often used for corporate events and parties and by relatively inexperienced participants who may not appreciate the risks involved. The abducted and externally rotated shoulder position, combined with nearby walls, tight spaces, and the strong airstream, has resulted in a pattern of shoulder dislocation injuries.
View Article and Find Full Text PDFSpiNNaker is a massively parallel distributed architecture primarily focused on real time simulation of spiking neural networks. The largest realization of the architecture consists of one million general purpose processors, making it the largest neuromorphic computing platform in the world at the present time. Utilizing these processors efficiently requires expert knowledge of the architecture to generate executable code and to harness the potential of the unique inter-processor communications infra-structure that lies at the heart of the SpiNNaker architecture.
View Article and Find Full Text PDFThis work presents sPyNNaker 4.0.0, the latest version of the software package for simulating PyNN-defined spiking neural networks (SNNs) on the SpiNNaker neuromorphic platform.
View Article and Find Full Text PDFAdvances in experimental techniques and computational power allowing researchers to gather anatomical and electrophysiological data at unprecedented levels of detail have fostered the development of increasingly complex models in computational neuroscience. Large-scale, biophysically detailed cell models pose a particular set of computational challenges, and this has led to the development of a number of domain-specific simulators. At the other level of detail, the ever growing variety of point neuron models increases the implementation barrier even for those based on the relatively simple integrate-and-fire neuron model.
View Article and Find Full Text PDFThe digital neuromorphic hardware SpiNNaker has been developed with the aim of enabling large-scale neural network simulations in real time and with low power consumption. Real-time performance is achieved with 1 ms integration time steps, and thus applies to neural networks for which faster time scales of the dynamics can be neglected. By slowing down the simulation, shorter integration time steps and hence faster time scales, which are often biologically relevant, can be incorporated.
View Article and Find Full Text PDF