Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo.
View Article and Find Full Text PDFConstructing ecological networks has become an indispensable approach in understanding how different taxa interact. However, the methods used to generate data in network research vary widely among studies, potentially limiting our ability to compare results meaningfully. In particular, methods of classifying nodes vary in their precision, likely altering the architecture of the network studied.
View Article and Find Full Text PDFMorphological variation between individuals can increase niche segregation and decrease intraspecific competition when heterogeneous individuals explore their environment in different ways. Among bat species, wing shape correlates with flight maneuverability and habitat use, with species that possess broader wings typically foraging in more cluttered habitats. However, few studies have investigated the role of morphological variation in bats for niche partitioning at the individual level.
View Article and Find Full Text PDF