Publications by authors named "David R Cocker"

Lung exposures to dusts, pollutants, and other aerosol particulates are known to be associated with pulmonary diseases such as asthma and Chronic Obstructive Pulmonary Disease. These health impacts are attributed to the ability of aerosol components to induce pulmonary inflammation, which promotes tissue remodeling, including fibrosis, tissue degradation, and smooth muscle proliferation. Consequently, the distribution of these effects can have a significant impact on the physiologic function of the lung.

View Article and Find Full Text PDF

This work, for the first time, assessed the secondary aerosol formation from both in-use diesel and natural gas heavy-duty vehicles of different vocations when they were operated on a chassis dynamometer while the vehicles were exercised on different driving cycles. Testing was performed on natural gas vehicles equipped with three-way catalysts (TWCs) and diesel trucks equipped with diesel oxidation catalysts, diesel particulate filters, and selective catalytic reduction systems. Secondary aerosol was measured after introducing dilute exhaust into a 30 m environmental chamber.

View Article and Find Full Text PDF

Atmospheric simulation chambers continue to be indispensable tools for research in the atmospheric sciences. Insights from chamber studies are integrated into atmospheric chemical transport models, which are used for science-informed policy decisions. However, a centralized data management and access infrastructure for their scientific products had not been available in the United States and many parts of the world.

View Article and Find Full Text PDF

Background: A high incidence of asthma is prevalent among residents near the Salton Sea, a large inland terminal lake in southern California. This arid region has high levels of ambient particulate matter (PM); yet while high PM levels are often associated with asthma in many environments, it is possible that the rapidly retreating lake, and exposed playa or lakebed, may contribute components with a specific role in promoting asthma symptoms.

Objectives: Our hypothesis is that asthma may be higher in residents closest to the Salton Sea due to chronic exposures to playa dust.

View Article and Find Full Text PDF

This manuscript contains an assessment of tailpipe emissions and secondary aerosol formation from two in-use heavy-duty diesel vehicles (HDDVs) with different aftertreatment systems when operated with ultra-low sulfur diesel (ULSD) and hydrogenated vegetable oil (HVO) operated on a chassis dynamometer. Secondary aerosol formation was characterized from the HDDVs' diluted exhaust collected and photochemically aged in a 30 m mobile atmospheric chamber. Primary nitrogen oxide (NOx) and particulate matter (PM) emissions were reduced for both vehicles operating on HVO compared to ULSD.

View Article and Find Full Text PDF

Current chemical transport models generally use a constant secondary organic aerosol (SOA) yield to represent SOA formation from aromatic compounds under low NO conditions. However, a wide range of SOA yields (10 to 42%) from -xylene under low NO conditions is observed in this study. The chamber HO/RO ratio is identified as a key factor explaining SOA yield variability: higher SOA yields are observed for runs with a higher HO/RO ratio.

View Article and Find Full Text PDF

In communities surrounding the Salton Sea, high rates of asthma are associated with high aerosol dust levels. However, the Salton Sea itself may play an additional role in pulmonary health. Therefore, to investigate a potential role of the Salton Sea on pulmonary health, we exposed mice to aerosolized Salton Sea water for 7 days and assessed tissue responses, including cellular infiltration and gene expression changes.

View Article and Find Full Text PDF

A comprehensive study on the effects of photochemical aging on exhaust emissions from a vehicle equipped with a gasoline direct injection engine when operated over seven different driving cycles was assessed using an oxidation flow reactor. Both primary emissions and secondary aerosol production were measured over the Federal Test Procedure (FTP), LA92, New European Driving Cycle (NEDC), US06, and the Highway Fuel Economy Test (HWFET), as well as over two real-world cycles developed by the California Department of Transportation (Caltrans) mimicking typical highway driving conditions. We showed that the emissions of primary particles were largely depended on cold-start conditions and acceleration events.

View Article and Find Full Text PDF

While the effects of fuel composition on primary vehicle emissions have been well studied, less is known about the effects on secondary aerosol formation and composition. The propensity of light-duty gasoline engines to form secondary aerosol and contribute to regional air quality burdens are of scientific interest. This study assessed secondary aerosol formation and composition due to photochemical aging of exhaust emissions from a light-duty vehicle equipped with gasoline direct injection (GDI) engine.

View Article and Find Full Text PDF

Data describing the composition of smoke are inherently multivariate and always non-negative parts of a whole. The data are relative and the information is contained in the ratios between parts of the composition. A prior analysis of smoke emissions produced from the burning of manzanita wood mixed with low-density polyethylene plastic applied traditional statistical methods to the compositional data and found no effect.

View Article and Find Full Text PDF

Air pollution poses a significant threat to the environment and human health. Most in vivo health studies conducted regarding air pollutants, including particulate matter (PM) and gas phase pollutants, have been either through traditional medical intranasal treatment or using a tiny chamber, which limit animal activities. In this study, we designed and tested a large, whole-body, multiple animal exposure chamber with uniform dispersion and exposure stability for animal studies.

View Article and Find Full Text PDF

The effects of photochemical aging on exhaust emissions from two light-duty vehicles with gasoline direct injection (GDI) engines equipped with and without catalyzed gasoline particle filters (GPFs) were investigated using a mobile environmental chamber. Both vehicles with and without the GPFs were exercised over the LA92 drive cycle using a chassis dynamometer. Diluted exhaust emissions from the entire LA92 cycle were introduced to the mobile chamber and subsequently photochemically reacted.

View Article and Find Full Text PDF

The primary goal of this study was to compare emissions measurements between a 1065 compliant PEMS, and the NTK Compact Emissions Meter (NCEM) capable of measuring NOx, PM, and solid PN. Both units were equipped on a light-duty diesel truck and tested over local, highway, and downtown driving routes. The results indicate that the NOx measurements for the NCEM were within approximately ±10% of those the 1065 compliant PEMS, which suggests that the NCEM could be used as a screening tool for NOx emissions.

View Article and Find Full Text PDF

We assessed the chemical properties and oxidative stress of particulate matter (PM) emissions from underfired charbroiled meat operations with and without the use of aftertreatment control technologies. Cooking emissions concentrations showed a strong dependence on the control technology utilized, with all emission rates showing decreases with the control technologies compared to the baseline testing. The organic acids profile was dominated by the saturated nonanoic, myristic, palmitic, and stearic acids, and the unsaturated oleic, elaidic, and palmitoleic acids.

View Article and Find Full Text PDF

Hybrid engine technology is a potentially important strategy for reduction of tailpipe greenhouse gas (GHG) emissions and other pollutants that is now being implemented for off-road construction equipment. The goal of this study was to evaluate the emissions and fuel consumption impacts of electric-hybrid excavators using a Portable Emissions Measurement System (PEMS)-based methodology. In this study, three hybrid and four conventional excavators were studied for both real world activity patterns and tailpipe emissions.

View Article and Find Full Text PDF

This study assessed the effectiveness of three novel control technologies for particulate matter (PM) and volatile organic compound (VOC) removal from commercial meat cooking operations. All experiments were conducted using standardized procedures at University of California, Riverside's commercial test cooking facility. PM mass emissions collected using South Coast Air Quality Management District (SCAQMD) Method 5.

View Article and Find Full Text PDF

We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced.

View Article and Find Full Text PDF

The emissions and the potential health effects of particulate matter (PM) were assessed from two heavy-duty trucks with and without emission control aftertreatment systems when operating on CARB ultra-low sulfur diesel (ULSD) and three different biodiesel blends. The CARB ULSD was blended with soy-based biodiesel, animal fat biodiesel, and waste cooking oil biodiesel at 50vol%. Testing was conducted over the EPA Urban Dynamometer Driving Schedule (UDDS) in triplicate for both trucks.

View Article and Find Full Text PDF

Ocean going vessels (OGVs) operating within emission control areas (ECA) are required to use fuels with ≤0.1 wt % sulfur. Up to now only distillate fuels could meet the sulfur limits.

View Article and Find Full Text PDF

Innovative secondary organic aerosol (SOA) composition analysis methods normalizing aerosol yield and chemical composition on an aromatic ring basis are developed and utilized to explore aerosol formation from oxidation of aromatic hydrocarbons. SOA yield and chemical composition are revisited using 15 years of University of California, Riverside/CE-CERT environmental chamber data on 17 aromatic hydrocarbons with HC:NO ranging from 11.1 to 171 ppbC:ppb.

View Article and Find Full Text PDF
Article Synopsis
  • * The study investigates how varying temperatures affect SOA formation, focusing on different experimental systems including photo-oxidation and dark ozonolysis of isoprene.
  • * Findings indicate that higher temperatures generally lead to lower SOA yields, stable or slightly increased particle density, and less volatile SOA, with complex chemical trends observed based on temperature and oxidant used.
View Article and Find Full Text PDF

Unlabelled: Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activities--activities associated with development and care of forests--dry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (Arctostaphylos sp.

View Article and Find Full Text PDF

Unlabelled: Regulatory agencies have shifted their emphasis from measuring emissions during certification cycles to measuring emissions during actual use. Emission measurements in this research were made from two different large ships at sea to compare the Simplified Measurement Method (SMM) compliant with the International Maritime Organization (IMO) NOx Technical Code to the Portable Emission Measurement Systems (PEMS) compliant with the US. Environmental Protection Agency (EPA) 40 Code of Federal Regulations (CFR) Part 1065 for on-road emission testing.

View Article and Find Full Text PDF
Article Synopsis
  • - A study at UC Riverside examines how secondary organic aerosol (SOA) from the ozonolysis of alpha-pinene ages when exposed to hydroxyl (OH) and nitrate (NO3) radicals, affecting its physical and chemical properties.
  • - The introduction of these radicals increases the volume, oxygen-to-carbon ratio, and hydrophilicity of the SOA, suggesting significant chemical changes occur due to reactions with first-generation vapor products and UV light.
  • - The findings highlight that the aging process can modify the toxic characteristics of SOA in the atmosphere, indicating the need to understand these changes for environmental and health implications.
View Article and Find Full Text PDF

Reducing emissions from ocean-going vessels (OGVs) as they sail near populated areas is a widely recognized goal, and Vessel Speed Reduction (VSR) is one of several strategies that is being adopted by regulators and port authorities. The goal of this research was to measure the emission benefits associated with greenhouse gas and criteria pollutants by operating OGVs at reduced speed. Emissions were measured from one Panamax and one post-Panamax class container vessels as their vessel speed was reduced from cruise to 15 knots or below.

View Article and Find Full Text PDF