The sensitivity of pulsed electron paramagnetic resonance (EPR) measurements on broad-line paramagnetic centers is often limited by the available excitation bandwidth. One way to increase excitation bandwidth is through the use of chirp or composite pulses. However, performance can be limited by cavity or detection bandwidth, which in commercial systems is typically 100-200MHz.
View Article and Find Full Text PDFThis work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron-electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin.
View Article and Find Full Text PDFA technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.
View Article and Find Full Text PDFA Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR.
View Article and Find Full Text PDFDNP enhanced (1)H NMR at 143 MHz in toluene is investigated using an NMR spectrometer coupled with a modified EPR spectrometer operating at 94 GHz and TEMPOL as the polarisation agent. A 100 W microwave amplifier was incorporated into the output stage of the EPR instrument so that high microwave powers could be delivered to the probe in either CW or pulsed mode. The maximum enhancement for the ring protons increases from approximately -16 for a 5 mM TEMPOL solution to approximately -50 for a 20 mM solution at a microwave power of approximately 480 mW.
View Article and Find Full Text PDFIn this communication we report initial results using high power pulsed techniques at 94 GHz to perform solid state Dynamic Nuclear Polarisation (DNP) on high volume samples. It is shown that excitation with short pulses, comparable to the pi/2 pulse length, at fast repetition rates can result in higher DNP enhancements relative to continuous wave (cw) excitation for the same average power. Peak enhancements are observed at an average power of only a few hundred mW delivered to the sample.
View Article and Find Full Text PDFWe describe a quasioptical 94 GHz kW pulsed electron paramagnetic resonance spectrometer featuring pi/2 pulses as short as 5 ns and an instantaneous bandwidth of 1 GHz in nonresonant sample holders operating in induction mode and at low temperatures. Low power pulses can be as short as 200 ps and kilowatt pulses as short as 1.5 ns with timing resolution of a few hundred picoseconds.
View Article and Find Full Text PDF