Publications by authors named "David R Blais"

Background: As Cannabis was legalised in Canada for recreational use in 2018 with the implementation of the Cannabis Act, Regulations were put in place to ensure safety and consistency across the cannabis industry. This includes the requirement for licence holders to demonstrate that no unauthorized pesticides are used to treat cannabis or have contaminated it. In this study, we describe an expanded 327 multi-residue pesticide analysis in cannabis inflorescence to confirm if the implementation of the Cannabis Act is providing safer licensed products to Canadians in comparison to those of the illicit market.

View Article and Find Full Text PDF

Three related analytical methods were developed and validated for the determination of pesticides in cannabis leaves, dried cannabis flowers, and cannabis oil. The methods follow the generic sequence of an acetonitrile extraction, followed by solid-phase extraction cleanup and analysis by HPLC-tandem mass spectrometry (HPLC-MS/MS), GC-MS/MS, and GC-MS. These methods were developed to accommodate sample quantity and lipid content of the different matrices.

View Article and Find Full Text PDF

To complete its life cycle, the hepatitis C virus (HCV) induces changes to numerous aspects of its host cell. As kinases act as regulators of many pathways utilized by HCV, they are likely enzyme targets for virally induced inhibition or activation. Herein, we used activity-based protein profiling (ABPP), which allows for the identification of active enzymes in complex protein samples and the quantification of their activity, to identify kinases that displayed differential activity in HCV-expressing cells.

View Article and Find Full Text PDF

Rhomboid proteins comprise the largest class of intramembrane protease known, being conserved from bacteria to humans. The functional status of these proteases is typically assessed through direct or indirect detection of peptide cleavage products. Although these assays can report on the ability of a rhomboid to catalyze peptide bond cleavage, differences in measured hydrolysis rates can reflect changes in the structure and activity of catalytic residues, as well as the ability of the substrate to access the active site.

View Article and Find Full Text PDF

Virologists have benefited from large-scale profiling methods to discover new host-virus interactions and to learn about the mechanisms of pathogenesis. One such technique, referred to as activity-based protein profiling (ABPP), uses active site-directed probes to monitor the functional state of enzymes, taking into account post-translational interactions and modifications. ABPP gives insight into the catalytic activity of enzyme families that does not necessarily correlate with protein abundance.

View Article and Find Full Text PDF

The economical preparation of microgram quantities of (14)C-labeled proteins by in vacuo methylation with methyl iodide is described. The (14)C radiolabeling was achieved by the covalent attachment of [(14)C]methyl groups onto amino and imidazole groups by reaction in vacuo with [(14)C]methyl iodide. The method was tested by investigating the biodistribution of (14)C in rats that were fed (14)C-labeled human soluble cluster of differentiation 14 (CD14) protein, a receptor for bacterial lipopolysaccharide.

View Article and Find Full Text PDF

Mother's milk represents a foundational step in the proper development of newborn immunity. This is achieved, in part, through the action of numerous regulatory proteins such as soluble cluster of differentiation 14 (sCD14) found in significant quantities in human milk (~25-50 μg/mL). In adults, CD14 stimulates cytokine production in response to lipopolysaccharide (LPS), the major lipid component found in the outer membrane of Gram-negative bacteria.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) relies on many interactions with host cell proteins for propagation. Successful HCV infection also requires enzymatic activity of host cell enzymes for key post-translational modifications. To identify such enzymes, we have applied activity-based protein profiling to examine the activity of serine hydrolases during HCV replication.

View Article and Find Full Text PDF

Background: Hepatitis C virus (HCV) poses a growing threat to global health as it often leads to serious liver diseases and is one of the primary causes for liver transplantation. Currently, no vaccines are available to prevent HCV infection and clinical treatments have limited success. Since HCV has a small proteome, it relies on many host cell proteins to complete its life cycle.

View Article and Find Full Text PDF

Activity-based protein profiling (ABPP) offers direct insight into changes in catalytic activity of enzyme classes in complex proteomes, rather than protein or transcript abundance. Here, ABPP was performed in Huh7 hepatoma cell lines with a group of ABPP probes composed of an N-acetylated amino acid, that mimic the P(1) position in protease peptide substrates. Five different probes bearing distinct amino acids (Ser, Thr, Phe, Glu and His) labeled 54 differentially active proteins, including proteases, other hydrolases, oxidoreductases and isomerases.

View Article and Find Full Text PDF

Here we have simultaneously characterized the influence of inhibitors of peroxisome proliferator-activated receptor alpha (PPARalpha) and the mevalonate pathway on hepatocyte lipid metabolism and the subcellular localization of hepatitis C virus (HCV) RNA using two-photon fluorescence (TPF) and coherent anti-Stokes Raman scattering (CARS) microscopy. Using this approach, we demonstrate that modulators of PPARalpha signaling rapidly cause the dispersion of HCV RNA from replication sites and simultaneously induce lipid storage and increases in lipid droplet size. We demonstrate that reductions in the levels of cholesterol resulting from inhibition of the mevalonate pathway upregulates triglyceride levels.

View Article and Find Full Text PDF

Suspension microsphere immunoassays are rapidly gaining recognition in antigen identification and infectious disease biodetection due to their simplicity, versatility and high-throughput multiplex screening. We demonstrate a multiplex assay based on antibody-functionalized barcoded resins (BCRs) to identify pathogen antigens in complex biological fluids. The binding event of a particular antibody on given bead (fluorescence) and the identification of the specific pathogen agent (vibrational fingerprint of the bead) can be achieved in a dispersive Raman system by exciting the sample with two different laser lines.

View Article and Find Full Text PDF

There are currently no safe methods for feeding babies born from the 16 million HIV-infected women living in resource-constrained countries. Breast milk can transmit HIV, and formula feeding can lead to gastrointestinal illnesses owing to unsanitary conditions and the composition of milk formulations. There is therefore a need to ensure that breast milk substitutes provide optimal health outcomes.

View Article and Find Full Text PDF

Here, we demonstrate the potential of barcoded resins (BCRs) as a reliable platform for immunoassays. Four BCRs were synthesized by dispersion polymerization of 4-methylstyrene, t-butylstyrene, 2,4-dimethylstyrene, and 2,5-dimethylstyrene. Methacrylic acid was included in the polymerization step to provide an anchor point for antibody conjugation.

View Article and Find Full Text PDF

Human CD14 plays an important role in innate immunity by being the key receptor of lipopolysaccharide found on Gram-negative bacteria. The recently discovered widespread localization of CD14 in secretions and mucosal surfaces reveals its extensive anti-microbial properties and numerous potential medical applications. To produce active recombinant human CD14 (rhCD14) for massive distribution, transgenic tobacco plants were successfully generated to express rhCD14 in the seed endosperm under the control of two versions (1.

View Article and Find Full Text PDF

Human breast milk contains several proteins that supplement the newborn mucosal defense system and prevent gastrointestinal illnesses. One of these recently identified breast milk proteins is soluble CD14 (sCD14). By being an important component of the lipopolysaccharide (LPS) receptor complex, it has been suggested that breast milk sCD14 could stimulate the newborn immune system and help reduce gastrointestinal Gram-negative infections.

View Article and Find Full Text PDF

Purpose: Lipopolysaccharide (LPS) is one of the most powerful bacterial virulence factors in terms of proinflammatory properties and is likely to contribute to corneal bacterial keratitis. Better understanding of the spatial expression of the LPS receptor components at the tear-corneal interface might facilitate enhanced functions of the LPS receptor complex in ocular defense against Gram-negative infections.

Methods: The expression of LPS-binding protein (LBP), CD14, toll-like receptor (TLR)-4, and MD-2 in human lacrimal glands, reflex tears, and corneal epithelia was examined by ELISA, RT-PCR, Western blot analysis, and immunofluorescence.

View Article and Find Full Text PDF