Publications by authors named "David R B Brittain"

Quantum chemistry calculations have been used alongside experimental kinetic analysis to investigate the competition between S(N)2 and E2 mechanisms for the dechlorination of hexachlorocyclohexane isomers, revealing that enzyme specificity reflects the intrinsic reactivity of the various isomers.

View Article and Find Full Text PDF

Serious (up to 87 kJ mol(-1)) systematic DFT errors in a series of isodesmic reactions are found to be due to the DFT exchange component, and can be largely corrected by substitution of the DFT exchange energy with the Fock exchange energy.

View Article and Find Full Text PDF

The performance of a variety of DFT functionals (BLYP, PBE, B3LYP, B3P86, KMLYP, B1B95, MPWPW91, MPW1B95, BB1K, MPW1K, MPWB1K, and BMK), together with the ab initio methods RHF, RMP2, and G3(MP2)-RAD, and with ONIOM methods based on combinations of these procedures, is examined for calculating the enthalpies of a range of radical reactions. The systems studied include the bond dissociation energies (BDEs) of R-X (R = CH3, CH2F, CH2OH, CH2CN, CH2Ph, CH(CH3)Ph, C(CH3)2Ph; X = H, CH3, OCH3, OH, F), RCH(Ph)-X (R = CH3, CH3CH2, CH(CH3)2, C(CH3)3, CH2F, CH2OH, CH2CN; X = H, F), R-TEMPO (R = CH3, CH2CH3, CH(CH3)2, C(CH3)3, CH2CH2CH3, CH2F, CH2OH, CH2CN, CH(CN)CH3, CH(Cl)CH3; TEMPO = 2,2,6,6,-tetramethylpiperidin-1-yloxyl) and HM1M2-X (M1, M2 = CH2CH(CH3), CH2CH(COOCH3), CH2C(CH3)(COOCH3); X = Cl, Br), the beta-scission energies of RXCH2* and RCH2CHPh* (R = CH3, CH2CH3, CH(CH3)2, C(CH3)3; X = O, S, CH2), and the enthalpies of several radical addition, ring-opening, and hydrogen- and chlorine-transfer reactions. All of the DFT methods examined failed to provide an accurate description of the energetics of the radical reactions when compared with benchmark G3(MP2)-RAD values, with all methods tested showing unpredictable deviations of up to 40 kJ mol-1 or more in some cases.

View Article and Find Full Text PDF

alpha-Cyclodextrin, beta-cyclodextrin, N-(6(A)-deoxy-alpha-cyclodextrin-6(A)-yl)-N'6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea and N,N-bis(6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea (alphaCD, betaCD, 1 and 2) form inclusion complexes with E-4-tert-butylphenyl-4'-oxyazobenzene, E-3(-). In aqueous solution at pH 10.0, 298.

View Article and Find Full Text PDF