Publications by authors named "David R Appleton"

Unlabelled: Driven by the demand for more sustainable products, research and capital investment has been committed to developing microbially produced oils. While researchers have shown oleaginous yeasts and other microbes can produce low-carbon footprint oils by leveraging waste streams as energy sources, previous analyses have not fully explored the quantity of available waste streams and in turn economy-of-scale enabled on capital and operating expenses. This paper makes parallels to 2G ethanol facilities, enabling a data-driven understanding of large-scale production economics.

View Article and Find Full Text PDF

During the milling process of palm oil, the degree of palm fruit ripeness is a critical factor that affects the quality and quantity of the oil. As the palm fruit matures, its chlorophyll level decreases, and since chlorophyll in oil has undesirable effects on hydrogenation, bleachability, and oxidative degradation, it's important to monitor the chlorophyll content in palm oil during the milling process. This study investigated the use of light-induced chlorophyll fluorescence (LICF) for non-invasive and real-time monitoring of chlorophyll content in diluted crude palm oil (DCO) located at the dilution and oil classification point in palm oil mill.

View Article and Find Full Text PDF

The oil palm-pollinating weevil ( Faust) was introduced from Cameroon, West Africa, to Malaysia in 1981, and subsequently, to other oil palm-growing countries as well. This study aims to develop a set of robust -specific nuclear DNA markers to directly assess the genetic diversity of the weevil populations. A total of 19,148 SNP and 223,200 SSR were discovered from 48 weevils representing three origins (Peninsular Malaysia, Sabah, and Riau) using RAD tag sequencing.

View Article and Find Full Text PDF

Background: The ability of plants to withstand and thrive in an adverse environment is crucial to ensure their survivability and yield performance. The WRKY transcription factors (TFs) have crucial roles in plant growth, development and stress response, particularly drought stress. In oil palm, drought is recognized as one of the major yield limiting factors.

View Article and Find Full Text PDF

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful tool for the precise editing of plant genomes for crop improvement. Rapid methods for the determination of guide RNA (gRNA) cleavage efficiency and an efficient DNA delivery system is essential for gene editing. However, we lack an efficient gene-editing system for palm species.

View Article and Find Full Text PDF

Chlorinated compounds such as sphingolipid-based organochlorine compounds are precursors for the formation of 3-monochlororopanediol (3-MCPD) esters in palm oil. This study evaluates the effects of several factors within the palm oil supply chain on the levels of sphingolipid-based organochlorine, which in turn may influence the formation of 3-MCPD esters during refining. These factors include application of inorganic chlorinated fertiliser in the oil palm plantation, bruising and degradation of oil palm fruits after harvest, recycling of steriliser condensate as water for dilution of crude oil during oil palm milling, water washing of palm oil and different refining conditions.

View Article and Find Full Text PDF

Stomatal density is an important trait for breeding selection of drought tolerant oil palms; however, its measurement is extremely tedious. To accelerate this process, we developed an automated system. Leaf samples from 128 palms ranging from nursery (1 years old), juvenile (2-3 years old) and mature (> 10 years old) were collected to build an oil palm specific stomata detection model.

View Article and Find Full Text PDF

Oil palm ( Jacq.) is the most traded crop among the economically important palm species. Here, we report an extended version genome of that is 1.

View Article and Find Full Text PDF

Superior oil yield is always the top priority of the oil palm industry. Short trunk height (THT) and compactness traits have become increasingly important to improve harvesting efficiency since the industry started to suffer yield losses due to labor shortages. Breeding populations with low THT and short frond length (FL) are actually available, such as AVROS (DAV) and (GM).

View Article and Find Full Text PDF

Meiotic crossovers in outbred species, such as oil palm (Elaeis guineensis Jacq., 2n = 32) contribute to allelic re-assortment in the genome. Such genetic variation is usually exploited in breeding to combine positive alleles for trait superiority.

View Article and Find Full Text PDF

To investigate limiters of photosynthate assimilation in the carbon-source limited crop, oil palm (Elaeis guineensis Jacq.), we measured differential metabolite, gene expression and the gas exchange in leaves in an open field for palms with distinct mesocarp oil content. We observed higher concentrations of glucose 1-phosphate, glucose 6-phosphate, sucrose 6-phosphate, and sucrose in high-oil content palms with the greatest difference being at 11:00 (p-value ≤0.

View Article and Find Full Text PDF

Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants.

View Article and Find Full Text PDF

During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic selection (GS) aims to enhance breeding programs for plants and animals using genome-wide markers, which is especially beneficial for long-breeding perennial crops like oil palm; this study evaluates GS methods in a specific dura family with key traits linked to oil yield and quality.
  • The study finds that different marker systems (SSRs vs. SNPs) and modeling techniques influence GS accuracy, with SNPs showing more promise; the most accurate trait measurements came from SNPs, significantly boosting the reliability of predicted traits.
  • Overall, the research concludes that using whole-genome SNPs dramatically improves GS effectiveness for breeding oil palm, leading to better genetic advancements in oil yield and composition.
View Article and Find Full Text PDF

Background: The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic selection (GS) leverages genome-wide markers to identify breeding individuals with optimal traits, focusing on various ratios and fruit yield in a population of 1,218 oil palms.
  • The study analyzed traits such as shell-to-fruit ratio and oil per palm, estimating genomic heritability between 0.40 to 0.80 and evaluating multiple GS methods with prediction accuracies of 0.40 to 0.70.
  • Ultimately, RR-BLUP method showed the potential for higher accuracy by refining marker selection, aiding in faster parental selection for oil palm breeding programs.
View Article and Find Full Text PDF

The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp.

View Article and Find Full Text PDF

Interest in the medicinal properties of secondary metabolites of Boesenbergia rotunda (fingerroot ginger) has led to investigations into tissue culture of this plant. In this study, we profiled its primary and secondary metabolites, as well as hormones of embryogenic and non-embryogenic (dry and watery) callus and shoot base, Ultra Performance Liquid Chromatography-Mass Spectrometry together with histological characterization. Metabolite profiling showed relatively higher levels of glutamine, arginine and lysine in embryogenic callus than in dry and watery calli, while shoot base tissue showed an intermediate level of primary metabolites.

View Article and Find Full Text PDF

High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes.

View Article and Find Full Text PDF

Background: The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues).

View Article and Find Full Text PDF

Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed.

View Article and Find Full Text PDF

Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.

View Article and Find Full Text PDF

To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio.

View Article and Find Full Text PDF

Oil palm is one of the most productive oil producing crops and can store up to 90% oil in its fruit mesocarp. However, the biosynthetic regulation and drivers of palm mesocarp development are still not well understood. Multiplatform metabolomics technology was used to profile palm metabolites during six critical stages of fruit development in order to better understand lipid biosynthesis.

View Article and Find Full Text PDF

A methanol-soluble extract of the bark of Myristica cinnamomea was found to exhibit anti-quorum sensing activity, and subsequent bioassay-guided isolation led to the identification of the active compound malabaricone C (1). Compound 1 inhibited violacein production by Chromobacterium violaceum CV026 when grown in the presence of a cognate signaling molecule, N-3-oxohexanoyl-homoserine lactone. Furthermore, 1 inhibited the quorum sensing-regulated pyocyanin production and biofilm formation in Pseudomonas aeruginosa PAO1.

View Article and Find Full Text PDF