Pixelated LGADs have been established as the baseline technology for timing detectors for the High Granularity Timing Detector (HGTD) and the Endcap Timing Layer (ETL) of the ATLAS and CMS experiments, respectively. The drawback of segmenting an LGAD is the non-gain area present between pixels and the consequent reduction in the fill factor. To overcome this issue, the inverse LGAD (iLGAD) technology has been proposed by IMB-CNM to enhance the fill factor and provide excellent tracking capabilities.
View Article and Find Full Text PDFBackground: Empirical data in proton therapy indicate that relative biological effectiveness (RBE) is not constant, and it is directly related to the linear energy transfer (LET). The experimental assessment of LET with high resolution would be a powerful tool for minimizing the LET hot spots in intensity-modulated proton therapy, RBE- or LET-guided evaluation and optimization to achieve biologically optimized proton plans, verifying the theoretical predictions of variable proton RBE models, and so on. This could impact clinical outcomes by reducing toxicities in organs at risk.
View Article and Find Full Text PDFThe present work reports on the microdosimetry measurements performed with the two first multi-arrays of microdosimeters with the highest radiation sensitive surface covered so far. The sensors are based on new silicon-based radiation detectors with a novel 3D cylindrical architecture. Each system consists of arrays of independent microdetectors covering 2 mm[Formula: see text]2 mm and 0.
View Article and Find Full Text PDFMicromachines (Basel)
December 2020
This paper provides an overview of 3D detectors fabrication technology developed in the clean room of the Microelectronics Institute of Barcelona (IMB-CNM). Emphasis is put on manufacturability, especially on stress and bow issues. Some of the technological solutions proposed at IMB-CNM to improve manufacturability are presented.
View Article and Find Full Text PDFThe present overview describes the evolution of new microdosimeters developed in the National Microelectronics Center in Spain (IMB-CNM, CSIC), ranging from the first ultra-thin 3D diodes (U3DTHINs) to the advanced 3D cylindrical microdetectors, which have been developed over the last 10 years. In this work, we summarize the design, main manufacture processes, and electrical characterization of these devices. These sensors were specifically customized for use in particle therapy and overcame some of the technological challenges in this domain, namely the low noise capability, well-defined sensitive volume, high spatial resolution, and pile-up robustness.
View Article and Find Full Text PDF