Publications by authors named "David Picard Druet"

Background: To reduce the cost of genomic selection, a low-density (LD) single nucleotide polymorphism (SNP) chip can be used in combination with imputation for genotyping selection candidates instead of using a high-density (HD) SNP chip. Next-generation sequencing (NGS) techniques have been increasingly used in livestock species but remain expensive for routine use for genomic selection. An alternative and cost-efficient solution is to use restriction site-associated DNA sequencing (RADseq) techniques to sequence only a fraction of the genome using restriction enzymes.

View Article and Find Full Text PDF

With the availability of the 600K Affymetrix Axiom high-density (HD) single nucleotide polymorphism (SNP) chip, genomic selection has been implemented in broiler and layer chicken. However, the cost of this SNP chip is too high to genotype all selection candidates. A solution is to develop a low-density SNP chip, at a lower price, and to impute all missing markers.

View Article and Find Full Text PDF

Background: Genomic evaluation, based on the use of thousands of genetic markers in addition to pedigree and phenotype information, has become the standard evaluation methodology in dairy cattle breeding programmes over the past several years. Despite the many differences between dairy cattle breeding and poultry breeding, genomic selection seems very promising for the avian sector, and studies are currently being conducted to optimize avian selection schemes. In this optimization perspective, one of the key parameters is to properly predict the accuracy of genomic evaluation in pure line layers.

View Article and Find Full Text PDF

Background: The main goal of selection is to achieve genetic gain for a population by choosing the best breeders among a set of selection candidates. Since 2013, the use of a high density genotyping chip (600K Affymetrix® Axiom® HD genotyping array) for chicken has enabled the implementation of genomic selection in layer and broiler breeding, but the genotyping costs remain high for a routine use on a large number of selection candidates. It has thus been deemed interesting to develop a low density genotyping chip that would induce lower costs.

View Article and Find Full Text PDF