Annu Workshop Extrem Scale Exp Loop Comput
November 2021
Mathematical optimization lies at the core of many science and industry applications. One important issue with many current optimization strategies is a well-known trade-off between the number of function evaluations and the probability to find the global, or at least sufficiently high-quality local optima. In machine learning (ML), and by extension in active learning - for instance for autonomous experimentation - mathematical optimization is often used to find the underlying uncertain surrogate model from which subsequent decisions are made and therefore ML relies on high-quality optima to obtain the most accurate models.
View Article and Find Full Text PDF