This paper discusses the role of ice crystal formation in causing or contributing to the difficulties that have been encountered in attempts to develop effective methods for the cryopreservation of some tissues and all organs. It is shown that extracellular ice can be severely damaging but also that cells in situ in tissues can behave quite differently from similar cells in a suspension with respect to intracellular freezing. It is concluded that techniques that avoid the formation of ice altogether are most likely to yield effective methods for the cryopreservation of recalcitrant tissues and vascularised organs.
View Article and Find Full Text PDFAlthough it is relatively straightforward to cryopreserve living isolated chondrocytes, at the present time there is no satisfactory method to preserve surgical grafts between the time of procurement or manufacture and actual use. In earlier papers we have established that the cryoprotectants dimethyl sulphoxide or propylene glycol do penetrate into this tissue very rapidly. Chondrocytes are not unusually susceptible to osmotic stress; in fact they appear to be particularly resistant.
View Article and Find Full Text PDFCryopreservation is the use of very low temperatures to preserve structurally intact living cells and tissues. Unprotected freezing is normally lethal and this chapter seeks to analyze some of the mechanisms involved and to show how cooling can be used to produce stable conditions that preserve life. The biological effects of cooling are dominated by the freezing of water, which results in the concentration of the solutes that are dissolved in the remaining liquid phase.
View Article and Find Full Text PDFIn carcinogenicity studies, pregabalin increased hemangiosarcoma incidence in mice but not in rats. Investigative studies, ranging in length from 24 h to 12 months, were conducted in mice (1000 or 5000 mg/kg) and rats (900 mg/kg) to evaluate a potential mode-of-action scheme for tumor formation. Three areas were evaluated: (1) hematopoiesis (because endothelial and hematopoietic cells arise from the same precursor and hemangiosarcomas are primarily located in mouse hematopoietic tissues), (2) angiogenic growth factors (because increased angiogenic growth factors may stimulate vascular tumors), and (3) pulmonary/blood gas parameters (because hypoxia is a known driver for endothelial cell proliferation).
View Article and Find Full Text PDFPregabalin increased the incidence of hemangiosarcomas in carcinogenicity studies of 2-year mice but was not tumorigenic in rats. Serum bicarbonate increased within 24 h of pregabalin administration in mice and rats. Rats compensated appropriately, but mice developed metabolic alkalosis and increased blood pH.
View Article and Find Full Text PDFPregabalin, (S)-3-(aminomethyl)-5-methylhexanoic acid, binds with high affinity to the α(2)δ subunit of voltage-gated calcium channels and exerts analgesic, anxiolytic, and antiseizure activities. Two-year carcinogenicity studies were completed in B6C3F1 and CD-1 mice and two separate studies in Wistar rats. Doses in mice were 200, 1000, and 5000 mg/kg/day, with systemic exposures (AUC(0-24 h)) up to 31 times the mean exposure in humans, given the maximum recommended clinical dose.
View Article and Find Full Text PDFWe report a case of an idiopathic acquired supraglottic web in an 83-year-old man. The web was managed with a combination of dilation and unilateral CO(2) laser excision. Subsequent to removal, the web recurred three times; it was removed in the same fashion twice and left alone once.
View Article and Find Full Text PDFThis paper discusses the role of ice crystal formation in causing or contributing to the difficulties that have been encountered in attempts to develop effective methods for the cryopreservation of some tissues and all organs. It is shown that extracellular ice can be severely damaging but also that cells in situ in tissues can behave quite differently from similar cells in a suspension with respect to intracellular freezing. It is concluded that techniques that avoid the formation of ice altogether are most likely to yield effective methods for the cryopreservation of recalcitrant tissues and vascularised organs.
View Article and Find Full Text PDFAlthough rarely occurring in humans, hemangiosarcomas (HS) have become important in evaluating the potential human risk of several chemicals, including industrial, agricultural, and pharmaceutical agents. Spontaneous HS arise frequently in mice, less commonly in rats, and frequently in numerous breeds of dogs. This review explores knowledge gaps and uncertainties related to the mode of action (MOA) for the induction of HS in rodents, and evaluates the potential relevance for human risk.
View Article and Find Full Text PDFPropane-1,2-diol (PD) possesses physico-chemical properties that make it a useful biological vitrifying agent but, although of relatively low toxicity, it still has substantial damaging effects on cells. This study aimed to identify possible toxic mechanisms using primary cell cultures from vascular tissue: these were exposed to the cryoprotectant at room temperature to avoid any possibility of hypothermic injury. Toxicity was evaluated by measuring the ability of the cells to divide in culture after exposure to the cryoprotectant.
View Article and Find Full Text PDFA previous study had suggested the use of a mixture of propanediol and trehalose for the preservation of tissues by vitrification. In this paper, we describe experiments in which stepwise procedures were developed for adding these cryoprotectants to high final concentrations in two rabbit tissues-carotid artery and cornea. The tissue concentration of the additives was measured at the end of each step so that the temperature of the next step could be chosen to reduce toxicity but avoid freezing.
View Article and Find Full Text PDFCryopreservation is the use of very low temperatures to preserve structurally intact living cells and tissues. Unprotected freezing is normally lethal and this chapter seeks to analyze some of the mechanisms involved and to show how cooling can be used to produce stable conditions that preserve life. The biological effects of cooling are dominated by the freezing of water, which results in the concentration of the solutes that are dissolved in the remaining liquid phase.
View Article and Find Full Text PDFThe cryopreservation of articular cartilage with survival of living cells has been a difficult problem. We have provided evidence that this is due to the formation of ice crystals in the chondrons. We have developed a method in which the concentration of the cryoprotectant dimethyl sulphoxide (Me(2)SO) is increased progressively, in steps, as cooling proceeds so that ice is never allowed to form, but the very high concentrations of Me(2)SO required at low temperatures are reached only at those low temperatures.
View Article and Find Full Text PDFSome tissues, such as cartilage and cornea, carry an internal fixed negative charge, leading to a swelling pressure that is balanced by tensile stress in the tissue matrix. During the addition and removal of cryoprotectants the changes in osmotic pressure will cause the tissue to deform. Because of the fixed charge and osmotic deformation, the permeation process in such tissues differs from ordinary diffusion processes.
View Article and Find Full Text PDFThis paper is a written version of a lecture given during the celebration of Professor Rudolf Klen's 90th birthday. Dr. Klen played by far the major part in the introduction and the development of Tissue Banking in Europe.
View Article and Find Full Text PDFCurrent cryopreservation protocols for haematopoietic cells have developed largely empirically and there is no consensus on an optimal method of preservation. These protocols, though providing sufficient cells to permit engraftment, can lead to cell loss of the order of 50 percent. In the context of umbilical cord blood such losses are unacceptable.
View Article and Find Full Text PDFAlthough it is relatively straightforward to cryopreserve living isolated chondrocytes, at the present time there is no satisfactory method to preserve surgical grafts between the time of procurement or manufacture and actual use. In earlier papers we have established that the cryoprotectants dimethyl sulphoxide or propylene glycol do penetrate into this tissue very rapidly. Chondrocytes are not unusually susceptible to osmotic stress; in fact they appear to be particularly resistant.
View Article and Find Full Text PDFAlthough isolated chondrocytes can be cryopreserved by standard methods, at the present time there is no satisfactory method that will preserve living chondrocytes in situ in surgical grafts, between the time of procurement or manufacture and actual use; survival of living chondrocytes in situ is inadequate at best and is also very variable. The first step in identifying the cause of this discrepancy was to establish that the cryoprotectants we had chosen to use, dimethyl sulphoxide and propylene glycol, do actually penetrate into the tissue rapidly. They do.
View Article and Find Full Text PDFThere is increasing interest in the possibility of treating diseased or damaged areas of synovial joint surfaces by grafts of healthy allogeneic cartilage. Such grafts could be obtained from cadaver tissue donors or in the future they might be manufactured by 'tissue engineering' methods. Cartilage is an avascular tissue and hence is immunologically privileged but to take advantage of this is the graft must contain living cells.
View Article and Find Full Text PDFHum Fertil (Camb)
December 2005
Traditional cryopreservation methods allow ice to form and solute concentrations to rise during the preservation process: both ice and high solute concentrations can cause damage. Cryoprotectants are highly soluble, permeating compounds of low toxicity; they reduce the amount of ice that crystallises at any given temperature and thereby limit the solute concentration factor. Vitrification methods use cryoprotectant concentrations that are sufficient to prevent the crystallisation of ice altogether: the material solidifies as an amorphous glass and both ice and solute concentration are avoided.
View Article and Find Full Text PDFThe aims of this study were to investigate the kinetics of the current glycerol banking method for the preservation of non-viable skin allografts; to improve it with respect to efficiency and microbial safety; and to investigate the possibility of using propylene glycol in place of glycerol to provide a more rapid process. Skin grafts were preserved in 98% v/v glycerol (GLY) according to the method used in the Sheffield Skin Bank. During the addition and removal processes, the amounts of GLY and water in the skin were determined using the Karl Fischer method and HPLC respectively.
View Article and Find Full Text PDF