Future societal systems will be characterized by heterogeneous human behaviors and data-driven collective action. Complexity will arise as a consequence of the 5th Industrial Revolution and 2nd Data Revolution possible, thanks to a new generation of digital systems and the Metaverse. These technologies will enable new computational methods to tackle inequality while preserving individual rights and self-development.
View Article and Find Full Text PDFWe propose a framework for the systematic analysis of mobile phone data to identify relevant mobility profiles in a population. The proposed framework allows finding distinct human mobility profiles based on the digital trace of mobile phone users characterized by a Matrix of Individual Trajectories (IT-Matrix). This matrix gathers a consistent and regularized description of individual trajectories that enables multi-scale representations along time and space, which can be used to extract aggregated indicators such as a dynamic multi-scale population count.
View Article and Find Full Text PDFIn patients at risk of intraventrcular thrombosis, the benefits of chronic anticoagulation therapy need to be balanced with the pro-hemorrhagic effects of therapy. Blood stasis in the cardiac chambers is a recognized risk factor for intracardiac thrombosis and potential cardiogenic embolic events. In this work, we present a novel flow image-based method to assess the location and extent of intraventricular stasis regions inside the left ventricle (LV) by digital processing flow-velocity images obtained either by phase-contrast magnetic resonance (PCMR) or 2D color-Doppler velocimetry (echo-CDV).
View Article and Find Full Text PDFMotivation: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark.
View Article and Find Full Text PDFObjectives: The study sought to evaluate the ability of cardiac magnetic resonance (CMR) to monitor acute and long-term changes in pulmonary vascular resistance (PVR) noninvasively.
Background: PVR monitoring during the follow-up of patients with pulmonary hypertension (PH) and the response to vasodilator testing require invasive right heart catheterization.
Methods: An experimental study in pigs was designed to evaluate the ability of CMR to monitor: 1) an acute increase in PVR generated by acute pulmonary embolization (n = 10); 2) serial changes in PVR in chronic PH (n = 22); and 3) changes in PVR during vasodilator testing in chronic PH (n = 10).
We propose to directly process 3D + t image sequences with mathematical morphology operators using a new classification of the 3D+t structuring elements. Several methods (filtering, tracking, segmentation) dedicated to the analysis of 3D + t datasets of zebrafish embryogenesis are introduced and validated through a synthetic dataset. Then, we illustrate the application of these methods to the analysis of datasets of zebrafish early development acquired with various microscopy techniques.
View Article and Find Full Text PDF