Short (15-30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates that the model-generated SPs are functional: when appended to enzymes expressed in an industrial strain, the SPs lead to secreted activity that is competitive with industrially used SPs.
View Article and Find Full Text PDFThe microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases.
View Article and Find Full Text PDFA fully orthogonally protected and enantiopure 2-deoxystreptamine derivative is prepared in a few straightforward steps from commercially available kanamycin. Resolution of a sterically hindered diacetate was effected by a Verenium esterase and was followed by a chemoselective Staudinger reduction-acylation protocol.
View Article and Find Full Text PDFUnderstanding the structural basis for protein thermostability is of considerable biological and biotechnological importance as exemplified by the industrial use of xylanases at elevated temperatures in the paper pulp and animal feed sectors. Here we have used directed protein evolution to generate hyperthermostable variants of a thermophilic GH11 xylanase, EvXyn11. The Gene Site Saturation Mutagenesis (GSSM) methodology employed assesses the influence on thermostability of all possible amino acid substitutions at each position in the primary structure of the target protein.
View Article and Find Full Text PDFEndo-beta1,4-xylanases (xylanases) hydrolyse the beta1,4 glycosidic bonds in the backbone of xylan. Although xylanases from glycoside hydrolase family 11 (GH11) have been extensively studied, several issues remain unresolved. Thus, the mechanism by which these enzymes hydrolyse decorated xylans is unclear and the structural basis for the variation in catalytic activity within this family is unknown.
View Article and Find Full Text PDF35 metagenome-derived esterases bearing a GGG(A)X motif were screened for activity and enantioselectivity in the hydrolysis of a range of tertiary alcohol acetates. Most of the active esterases showed little or no enantioselectivity in the hydrolysis of the terpinyl acetate, linalyl acetate and 3-methylpent-1-yn-3-yl acetate. However, one esterase showed excellent enantioselectivity (E > 100) in the kinetic resolution of 1,1,1-trifluoro-2-phenylbut-3-yn-2-yl acetate as confirmed by a preparative scale reaction.
View Article and Find Full Text PDFThe discovery, from nature, of a diverse set of microbial epoxide hydrolases is reported. The utility of a library of epoxide hydrolases in the synthesis of chiral 1,2-diols via desymmetrization of a wide range of meso-epoxides, including cyclic as well as acyclic alkyl- and aryl-substituted substrates, is demonstrated. The chiral (R,R)-diols were furnished with high ee's and yields.
View Article and Find Full Text PDFAppl Environ Microbiol
April 2004
Nitrilases are important in the biosphere as participants in synthesis and degradation pathways for naturally occurring, as well as xenobiotically derived, nitriles. Because of their inherent enantioselectivity, nitrilases are also attractive as mild, selective catalysts for setting chiral centers in fine chemical synthesis. Unfortunately, <20 nitrilases have been reported in the scientific and patent literature, and because of stability or specificity shortcomings, their utility has been largely unrealized.
View Article and Find Full Text PDFThe discovery, from Nature, of a large and diverse set of nitrilases is reported. The utility of this nitrilase library for identifying enzymes that catalyze efficient production of valuable hydroxy carboxylic acid derivatives is demonstrated. Unprecedented enantioselectivity and substrate scope are highlighted for three newly discovered and distinct nitrilases.
View Article and Find Full Text PDF