PDE11A4 is a target of interest for the treatment of age-related memory disorders. A previous report from our laboratories described an amide series of potent, selective PDE11A4 inhibitors that was metabolically unstable. Investigation of heterocyclic amide isosteres for the labile amide moiety revealed distinct structure-activity relationships and identified several compounds with potency comparable to the amide series.
View Article and Find Full Text PDFControlling malaria requires new drugs against . The cGMP-dependent protein kinase (PfPKG) is a validated target whose inhibitors could block multiple steps of the parasite's life cycle. We defined the structure-activity relationship (SAR) of a pyrrole series for PfPKG inhibition.
View Article and Find Full Text PDFPhosphodiesterase 11A4 (PDE11A4) is a dual-acting cyclic nucleotide hydrolase expressed in neurons in the CA1, subiculum, amygdalostriatal transition area and amygdalohippocampal area of the extended hippocampal formation. PDE11A4 is the only PDE enzyme to emanate solely from hippocampal formation, a key brain region for the formation of long-term memory. PDE11A4 expression increases in the hippocampal formation of both humans and rodents as they age.
View Article and Find Full Text PDFDrug discovery is a difficult task, and is even more challenging when the target evolves during therapy. Antiviral drug therapy is an excellent example, exemplified by the evolution of therapeutic approaches for treatment of hepatitis C and HIV-1. Nick Meanwell and his colleagues made important contributions leading to molecules for treatment of hepatitis C and HIV-1, each with distinct mechanisms of action.
View Article and Find Full Text PDFPlasmodium falciparum cGMP-dependent protein kinase (PfPKG) is an enticing antimalarial drug target. Novel chemotypes are needed because existing inhibitors have safety issues that may prevent further development. This work demonstrates isoxazole-based compounds are potent ATP competitive inhibitors of PfPKG and discloses a new analogue in this series.
View Article and Find Full Text PDFThe discovery of new targets for the treatment of malaria, in particular those aimed at the pre-erythrocytic stage in the life cycle, advanced with the demonstration that orally administered inhibitors of cGMP-dependent protein kinase (PfPKG) could clear infection in a murine model. This enthusiasm was tempered by unsatisfactory safety and/or pharmacokinetic issues found with these chemotypes. To address the urgent need for new scaffolds, this paper presents initial structure-activity relationships in an imidazole scaffold at four positions, representative ADME, hERG characterization, and cell-based antiparasitic activity.
View Article and Find Full Text PDFThe cGMP-dependent protein kinase in (PfPKG) plays multiple roles in the life cycle of the parasite. As a result, this enzyme is a potential target for new antimalarial agents. Existing inhbitors, while potent and active in malaria models are not optimal.
View Article and Find Full Text PDFFilariasis is a tropical disease caused by the parasitic nematodes Wuchereria bancrofti and Brugia malayi. Known inhibitors of dihydrofolate reductase (DHFR) have been previously shown to kill Brugia malayi nematodes and to inhibit Brugia malayi DHFR (BmDHFR) at nanomolar concentrations. These data suggest that BmDHFR is a potential target for the treatment of filariasis.
View Article and Find Full Text PDFLymphatic filariasis infects over 120 million people worldwide and can lead to significant disfigurement and disease. Resistance is emerging with current treatments, and these therapies have dose limiting adverse events; consequently new targets are needed. One approach to achieve this goal is inhibition of parasitic protein kinases involved in circumventing host defense mechanisms.
View Article and Find Full Text PDFQuinolinol-based compounds are a promising starting point for discovery of effective inhibitors of the clostridial neurotoxin, botulinum neurotoxin type A light chain (BoNT/A LC). Insights into the mechanism of inhibition by quinolinol compounds facilitate interpretation of docking data and inhibitor optimization. In this study, a fluorogenic substrate of BoNT/A, SNAPtide, was used to study the mechanism by which two new quinolinol compounds, MSU58 and MSU84, with IC values of 3.
View Article and Find Full Text PDFSmall molecules remain the backbone for modern drug discovery. They are conceived and synthesized by medicinal chemists, many of whom were originally trained as organic chemists. Support from government and industry to provide training and personnel for continued development of this critical skill set has been declining for many years.
View Article and Find Full Text PDFThe discovery and clinical development of heat shock protein 90 (Hsp90) inhibitors continue to progress. A number of Hsp90 inhibitors are in clinical trials, and preclinical discoveries of new chemotypes that bind to distinct regions in the protein as well as isoform selective compounds are active areas of research. This review will highlight progress in the field since 2010.
View Article and Find Full Text PDFPreventing viral entry into cells is a recognized approach for HIV therapy and has attracted attention for use against the hepatitis C virus (HCV). Recent reports described the activity of (-)-epigallocatechin gallate (EGCG) as an inhibitor of HCV entry with modest potency. EGCG is a polyphenolic natural product with a wide range of biological activity and unfavorable pharmaceutical properties.
View Article and Find Full Text PDF(-)-Epigallocatechin gallate (EGCG) is the major flavonoid of green tea and has been widely explored for a range of biological activities including anti-infective, anti-inflammatory, anti-cancer, and neuroprotection. Existing structure-activity data for EGCG has been largely limited to exploration of simple ethers and hydroxyl deletion. EGCG has poor drug-like properties because of multiple phenolic hydroxyl moieties and a metabolically labile ester.
View Article and Find Full Text PDF(-)-Epigallocatechin 3-O-gallate (EGCG) a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90), a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB) at pH=7.
View Article and Find Full Text PDFIntroduction: Boceprevir was the first direct acting agent developed for the treatment of hepatitis C virus infection. Boceprevir functions by targeting NS3 protease, a viral enzyme essential for replication. This peptidomimetic molecule was optimized from a peptide lead to provide a potent, selective and orally bioavailable drug that can be combined with ribavirin and peg interferon to achieve sustained viral response (undetectable HCV RNA levels for 24 weeks after completion of therapy) in patients infected with Genotype 1 of the virus.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2012
Protein kinases are becoming widely investigated targets for treatment of protozoal parasitic tropical diseases such as malaria and leishmaniasis. The search for potent, selective inhibitors of these parasitic enzymes has been aided by the extensive variety of structures prepared for human diseases. Genomic approaches to target identification and validation have aided the search.
View Article and Find Full Text PDF