Publications by authors named "David P Mindell"

Article Synopsis
  • Robinson and colleagues address the criticisms presented by Bakker et al. regarding their research findings.
  • They clarify the methodology and rationale used in their study to strengthen their arguments.
  • The response aims to resolve misunderstandings and provide a clearer perspective on their conclusions.
View Article and Find Full Text PDF

Due to their small population sizes, threatened and endangered species frequently suffer from a lack of genetic diversity, potentially leading to inbreeding depression and reduced adaptability. During the latter half of the twentieth century, North America's largest soaring bird, the California condor (Gymnogyps californianus; Critically Endangered), briefly went extinct in the wild. Though condors once ranged throughout North America, by 1982 only 22 individuals remained.

View Article and Find Full Text PDF

Background: Birds of prey (raptors) are dominant apex predators in terrestrial communities, with hawks (Accipitriformes) and falcons (Falconiformes) hunting by day and owls (Strigiformes) hunting by night.

Results: Here, we report new genomes and transcriptomes for 20 species of birds, including 16 species of birds of prey, and high-quality reference genomes for the Eurasian eagle-owl (Bubo bubo), oriental scops owl (Otus sunia), eastern buzzard (Buteo japonicus), and common kestrel (Falco tinnunculus). Our extensive genomic analysis and comparisons with non-raptor genomes identify common molecular signatures that underpin anatomical structure and sensory, muscle, circulatory, and respiratory systems related to a predatory lifestyle.

View Article and Find Full Text PDF

We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.

View Article and Find Full Text PDF

New World Vultures are large-bodied carrion feeding birds in the family Cathartidae, currently consisting of seven species from five genera with geographic distributions in North and South America. No study to date has included all cathartid species in a single phylogenetic analysis. In this study, we investigated the phylogenetic relationships among all cathartid species using five nuclear (nuc; 4060bp) and two mitochondrial (mt; 2165bp) DNA loci with fossil calibrated gene tree (27 outgroup taxa) and coalescent-based species tree (2 outgroup taxa) analyses.

View Article and Find Full Text PDF

Mitchell et al. argue that divergence-time estimates for our avian phylogeny were too young because of an "inappropriate" maximum age constraint for the most recent common ancestor of modern birds and that, as a result, most modern bird orders diverged before the Cretaceous-Paleogene mass extinction event 66 million years ago instead of after. However, their interpretations of the fossil record and timetrees are incorrect.

View Article and Find Full Text PDF

We report here the genome sequence of a circular virus isolated from samples of an Alaskan black-capped chickadee (Poecile atricapillus) gastrointestinal tract. The genome is 2,152 bp in length and is most similar (30 to 44.5% amino acid identity) to the genome sequences of other single-stranded DNA (ssDNA) circular viruses belonging to the gemycircularvirus group.

View Article and Find Full Text PDF

Background: Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses.

View Article and Find Full Text PDF

To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species.

View Article and Find Full Text PDF

Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss.

View Article and Find Full Text PDF

Understanding how and why lineages diversify is central to understanding the origins of biological diversity. The avian family Falconidae (caracaras, forest-falcons, falcons) has an uneven distribution of species among multiple well-supported clades, and provides a useful system for testing hypotheses about diversification rate and correlation with environmental changes. We analyzed eight independent loci for 1-7 individuals from each of the 64 currently recognized Falconidae species, together with two fossil falconid temporal calibrations, to assess phylogeny, absolute divergence times and potential shifts in diversification rate.

View Article and Find Full Text PDF

New theoretical and conceptual frameworks are required for evolutionary biology to capitalize on the wealth of data now becoming available from the study of genomes, phenotypes, and organisms - including humans - in their natural environments.

View Article and Find Full Text PDF

Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale 'tipping point' highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions.

View Article and Find Full Text PDF

The Neotropics are one of the most species rich regions on Earth, with over 3150 species of birds. This unrivaled biodiversity has been attributed to higher proportions of mountain ranges, tropical rain forest or rain fall in the forest than in any other major biogeographic regions. Five primary hypotheses aim to explain processes of diversification within the Neotropics; (1) the Pleistocene refuge hypothesis, (2) the riverine barrier hypothesis, (3) the Miocene marine incursions hypothesis, (4) the ecological gradient hypothesis, and (5) the impact of the last Andean uplift serving as a barrier between eastern and western population Andean populations.

View Article and Find Full Text PDF

Background: Our ability to monitor populations or species that were once threatened or endangered and in the process of recovery is enhanced by using genetic methods to assess overall population stability and size over time. This can be accomplished most directly by obtaining genetic measures from temporally-spaced samples that reflect the overall stability of the population as given by changes in genetic diversity levels (allelic richness and heterozygosity), degree of population differentiation (F(ST) and D(EST)), and effective population size (N(e)). The primary goal of any recovery effort is to produce a long-term self-sustaining population, and these genetic measures provide a metric by which we can gauge our progress and help make important management decisions.

View Article and Find Full Text PDF

Background: Phenotypic and molecular genetic data often provide conflicting patterns of intraspecific relationships confounding phylogenetic inference, particularly among birds where a variety of environmental factors may influence plumage characters. Among diurnal raptors, the taxonomic relationship of Buteo jamaicensis harlani to other B. jamaicensis subspecies has been long debated because of the polytypic nature of the plumage characteristics used in subspecies or species designations.

View Article and Find Full Text PDF

Background: The harpy eagle (Harpia harpyja) is the largest Neotropical bird of prey and is threatened by human persecution and habitat loss and fragmentation. Current conservation strategies include local education, captive rearing and reintroduction, and protection or creation of trans-national habitat blocks and corridors. Baseline genetic data prior to reintroduction of captive-bred stock is essential for guiding such efforts but has not been gathered previously.

View Article and Find Full Text PDF

The critically endangered Madagascar fish-eagle (Haliaeetus vociferoides) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100-120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle (Haliaeetus vocifer), and 16 of these loci were also characterized in the white-tailed eagle (Haliaeetus albicilla) and the bald eagle (Haliaeetus leucocephalus).

View Article and Find Full Text PDF

Background: Determining an absolute timescale for avian evolutionary history has proven contentious. The two sources of information available, paleontological data and inference from extant molecular genetic sequences (colloquially, 'rocks' and 'clocks'), have appeared irreconcilable; the fossil record supports a Cenozoic origin for most modern lineages, whereas molecular genetic estimates suggest that these same lineages originated deep within the Cretaceous and survived the K-Pg (Cretaceous-Paleogene; formerly Cretaceous-Tertiary or K-T) mass-extinction event. These two sources of data therefore appear to support fundamentally different models of avian evolution.

View Article and Find Full Text PDF

Little is known about the possible influence that past glacial events have had on the phylogeography and population structure of avian predators in the Arctic and sub-Arctic. In this study, we use microsatellite and mitochondrial control region DNA variation to investigate the population genetic structure of gyrfalcons (Falco rusticolus) throughout a large portion of their circumpolar distribution. In most locations sampled, the mtDNA data revealed little geographic structure; however, five out of eight mtDNA haplotypes were unique to a particular geographic area (Greenland, Iceland, or Alaska) and the Iceland population differed from others based on haplotype frequency differences (F(ST)).

View Article and Find Full Text PDF

The evolution of penguins has been investigated extensively, although inconclusively, by morphologists, biogeographers and molecular phylogeneticists. We investigated this issue using retroposon analysis of insertions of CR1, which is a member of the LINE (long interspersed element) family, in the genomes of penguins and penguin relatives. The retroposon method is a powerful tool for identifying monophyletic groups.

View Article and Find Full Text PDF