Publications by authors named "David P Minde"

Many proteins form dynamic complexes with DNA, RNA, and other proteins, which often involves protein conformational changes that are key to function. Yet, methods to probe these critical dynamics are scarce. Here we combine optical tweezers with fluorescence imaging to simultaneously monitor the conformation of individual proteins and their binding to partner proteins.

View Article and Find Full Text PDF

Optical tweezers allow the detection of unfolding and refolding transitions in individual proteins, and how interacting molecules such as chaperones affect these transitions. Typical methods that tether individual proteins are based on cysteine chemistry, which is less suitable for proteins with essential cysteines. Here we describe a cysteine-independent tethering protocol that can be performed in situ.

View Article and Find Full Text PDF

Chaperones assist in protein folding, but what this common phrase means in concrete terms has remained surprisingly poorly understood. We can readily measure chaperone binding to unfolded proteins, but how they bind and affect proteins along folding trajectories has remained obscure. Here we review recent efforts by our labs and others that are beginning to pry into this issue, with a focus on the chaperones trigger factor and Hsp70.

View Article and Find Full Text PDF

The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid.

View Article and Find Full Text PDF

Mutations in the central region of the signalling hub Adenomatous Polyposis Coli (APC) cause colorectal tumourigenesis. The structure of this region remained unknown. Here, we characterise the Mutation Cluster Region in APC (APC-MCR) as intrinsically disordered and propose a model how this structural feature may contribute to regulation of Wnt signalling by phosphorylation.

View Article and Find Full Text PDF

Protein tags of various sizes and shapes catalyze progress in biosciences. Well-folded tags can serve to solubilize proteins. Small, unfolded, peptide-like tags have become invaluable tools for protein purification as well as protein-protein interaction studies.

View Article and Find Full Text PDF

The biophysical stability is an important parameter for protein activity both in vivo and in vitro. Here we propose a method to analyse thermal melting of protein domains in lysates: Fast parallel proteolysis (FASTpp). Combining unfolding by a temperature gradient in a thermal cycler with simultaneous proteolytic cleavage of the unfolded state, we probed stability of single domains in lysates.

View Article and Find Full Text PDF

Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene strongly predispose to development of gastro-intestinal tumors. Central to the tumorigenic events in APC mutant cells is the uncontrolled stabilization and transcriptional activation of the protein β-catenin. Many questions remain as to how APC controls β-catenin degradation.

View Article and Find Full Text PDF

The Wnt pathway tumor-suppressor protein Axin coordinates the formation of a critical multiprotein destruction complex that serves to downregulate β-catenin protein levels, thereby preventing target gene activation. Given the lack of structural information on some of the major functional parts of Axin, it remains unresolved how the recruitment and positioning of Wnt pathway kinases, such as glycogen synthase kinase 3β, are coordinated to bring about β-catenin phosphorylation. Using various biochemical and biophysical methods, we demonstrate here that the central region of Axin that is implicated in binding glycogen synthase kinase 3β and β-catenin is natively unfolded.

View Article and Find Full Text PDF