In comparison to globular proteins, the spontaneous folding and insertion of β-barrel membrane proteins are surprisingly slow, typically occurring on the order of minutes. Using single-molecule Förster resonance energy transfer to report on the folding of fluorescently labeled outer membrane protein G we measured the real-time insertion of a β-barrel membrane protein from an unfolded state. Folding events were rare and fast (<20 ms), occurring immediately upon arrival at the membrane.
View Article and Find Full Text PDFThe transmembrane domain of the outer membrane protein A (OmpA) from Escherichia coli is an excellent model for structural and folding studies of β-barrel membrane proteins. However, full-length OmpA resists crystallographic efforts, and the link between its function and tertiary structure remains controversial. Here we use site-directed mutagenesis and mass spectrometry of different constructs of OmpA, released in the gas phase from detergent micelles, to define the minimal region encompassing the C-terminal dimer interface.
View Article and Find Full Text PDFWe describe a protocol for forming an artificial lipid bilayer by contacting nanoliter aqueous droplets in an oil solution in the presence of phospholipids. A lipid monolayer forms at each oil-water interface, and when two such monolayers touch, a bilayer is created. Droplet interface bilayers (DIBs) are a simple way to generate stable bilayers suitable for single-channel electrophysiology and optical imaging from a wide variety of preparations, ranging from purified proteins to reconstituted eukaryotic cell membrane fragments.
View Article and Find Full Text PDFActivation of CaMKII by calmodulin and the subsequent maintenance of constitutive activity through autophosphorylation at threonine residue 286 (Thr286) are thought to play a major role in synaptic plasticity. One of the effects of autophosphorylation at Thr286 is to increase the apparent affinity of CaMKII for calmodulin, a phenomenon known as "calmodulin trapping". It has previously been suggested that two binding sites for calmodulin exist on CaMKII, with high and low affinities, respectively.
View Article and Find Full Text PDFMembrane proteins account for nearly a quarter of all genes, but their structure and function remain incompletely understood. Most membrane proteins have transmembrane (TM) domains made up of bundles of hydrophobic alpha-helices. The lateral association of TM helices within the lipid bilayer is a key stage in the folding of membrane proteins.
View Article and Find Full Text PDF