An RNA ligase ribozyme that catalyzes the joining of RNA molecules of the opposite chiral handedness was optimized for the ability to synthesize its own enantiomer from two component fragments. The mirror-image D- and L-ligases operate in concert to provide a system for cross-chiral replication, whereby they catalyze each other's synthesis and undergo mutual amplification at constant temperature, with apparent exponential growth and a doubling time of about 1 h. Neither the D- nor the L-RNA components alone can achieve autocatalytic self-replication.
View Article and Find Full Text PDFAn RNA polymerase ribozyme that was obtained by directed evolution can propagate a functional RNA through repeated rounds of replication and selection, thereby enabling Darwinian evolution. Earlier versions of the polymerase did not have sufficient copying fidelity to propagate functional information, but a new variant with improved fidelity can replicate the hammerhead ribozyme through reciprocal synthesis of both the hammerhead and its complement, with the products then being selected for RNA-cleavage activity. Two evolutionary lineages were carried out in parallel, using either the prior low-fidelity or the newer high-fidelity polymerase.
View Article and Find Full Text PDFThe 5'-triphosphate is an essential nucleic acid modification found throughout all life and increasingly used as a functional modification of oligonucleotides in biotechnology and synthetic biology. Oligonucleotide 5'-triphosphates have historically been prepared in vitro by enzymatic methods. However, these methods are limited to natural RNA oligonucleotides, have strong sequence preferences, and tend to produce heterogeneous products.
View Article and Find Full Text PDFAn RNA polymerase ribozyme that has been the subject of extensive directed evolution efforts has attained the ability to synthesize complex functional RNAs, including a full-length copy of its own evolutionary ancestor. During the course of evolution, the catalytic core of the ribozyme has undergone a major structural rearrangement, resulting in a novel tertiary structural element that lies in close proximity to the active site. Through a combination of site-directed mutagenesis, structural probing, and deep sequencing analysis, the trajectory of evolution was seen to involve the progressive stabilization of the new structure, which provides the basis for improved catalytic activity of the ribozyme.
View Article and Find Full Text PDFThe RNA world scenario posits replication by RNA polymerases. On early Earth, a geophysical setting is required to separate hybridized strands after their replication and to localize them against diffusion. We present a pointed heat source that drives exponential, RNA-catalyzed amplification of short RNA with high efficiency in a confined chamber.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
The RNA-based organisms from which modern life is thought to have descended would have depended on an RNA polymerase ribozyme to copy functional RNA molecules, including copying the polymerase itself. Such a polymerase must have been capable of copying structured RNAs with high efficiency and high fidelity to maintain genetic information across successive generations. Here the class I RNA polymerase ribozyme was evolved in vitro for the ability to synthesize functional ribozymes, resulting in the markedly improved ability to synthesize complex RNAs using nucleoside 5'-triphosphate (NTP) substrates.
View Article and Find Full Text PDFAn RNA-dependent RNA polymerase ribozyme that was highly optimized through in vitro evolution for the ability to copy a broad range of template sequences exhibits promiscuity toward other nucleic acids and nucleic acid analogues, including DNA, threose nucleic acid (TNA), and arabinose nucleic acid (ANA). By operating on various RNA templates, the ribozyme catalyzes multiple successive additions of DNA, TNA, or ANA monomers, although with reduced efficiency compared to RNA monomers. The ribozyme can also copy DNA or TNA templates to complementary RNAs, and to a lesser extent it can operate when both the template and product strands are composed of DNA, TNA, or ANA.
View Article and Find Full Text PDFA polymerase ribozyme can be used to label the 3' end of RNA or DNA molecules by incorporating a variety of functionalized nucleotide analogs. Guided by a complementary template, the ribozyme adds a single nucleotide that may contain a fluorophore, biotin, azide or alkyne moiety, thus enabling the detection and/or capture of selectively labeled materials. Employing a variety of commercially available nucleotide analogs, efficient labeling was demonstrated for model RNAs and DNAs, human microRNAs and natural tRNA.
View Article and Find Full Text PDFIn all extant life, genetic information is stored in nucleic acids that are replicated by polymerase proteins. In the hypothesized RNA world, before the evolution of genetically encoded proteins, ancestral organisms contained RNA genes that were replicated by an RNA polymerase ribozyme. In an effort toward reconstructing RNA-based life in the laboratory, in vitro evolution was used to improve dramatically the activity and generality of an RNA polymerase ribozyme by selecting variants that can synthesize functional RNA molecules from an RNA template.
View Article and Find Full Text PDFA nuclease-resistant RNA enzyme, constructed entirely from L-ribonucleotides, was shown to undergo ligand-dependent, self-sustained replication with exponential growth. The catalytic motif is based on a previously described RNA ligase that can undergo either self- or cross-replication but had been limited in its application to ligand sensing due to its susceptibility to degradation by ribonucleases. The self-replicating RNA enzyme and its RNA substrates were prepared synthetically from either D- or L-nucleoside phosphoramidites.
View Article and Find Full Text PDFDNA repair enzymes are essential for maintaining the integrity of the DNA sequence. Unfortunately, very little is known about how these enzymes recognize damaged regions along the helix. Structural analysis of cellular repair enzymes bound to DNA reveals that these enzymes are able to recognize DNA in a variety of conformations.
View Article and Find Full Text PDF