J Appl Crystallogr
January 2024
Flow cells are ubiquitous in laboratories and automated instrumentation, and are crucial for ease of sample preparation, analyte addition and buffer exchange. The assumption that the fluids have exchanged completely in a flow cell is often critical to data interpretation. This article describes the buoyancy effects on the exchange of fluids with differing densities or viscosities in thin, circular flow cells.
View Article and Find Full Text PDFMacromolecular crowding is the usual condition of cells. The implications of the crowded cellular environment for protein stability and folding, protein-protein interactions, and intracellular transport drive a growing interest in quantifying the effects of crowding. While the properties of crowded solutions have been extensively studied, less attention has been paid to the interaction of crowders with the cellular boundaries, i.
View Article and Find Full Text PDFThe voltage-dependent anion channel (VDAC) is a β-barrel channel of the mitochondrial outer membrane (MOM) that passively transports ions, metabolites, polypeptides, and single-stranded DNA. VDAC responds to a transmembrane potential by "gating," i.e.
View Article and Find Full Text PDFCell Mol Life Sci
June 2022
Involvement of alpha-synuclein (αSyn) in Parkinson's disease (PD) is complicated and difficult to trace on cellular and molecular levels. Recently, we established that αSyn can regulate mitochondrial function by voltage-activated complexation with the voltage-dependent anion channel (VDAC) on the mitochondrial outer membrane. When complexed with αSyn, the VDAC pore is partially blocked, reducing the transport of ATP/ADP and other metabolites.
View Article and Find Full Text PDFVoltage-activated complexation is the process by which a transmembrane potential drives complex formation between a membrane-embedded channel and a soluble or membrane-peripheral target protein. Metabolite and calcium flux across the mitochondrial outer membrane was shown to be regulated by voltage-activated complexation of the voltage-dependent anion channel (VDAC) and either dimeric tubulin or α-synuclein (αSyn). However, the roles played by VDAC's characteristic attributes-its anion selectivity and voltage gating behavior-have remained unclear.
View Article and Find Full Text PDFThe voltage-dependent anion channel (VDAC) is the primary regulating pathway of water-soluble metabolites and ions across the mitochondrial outer membrane. When reconstituted into lipid membranes, VDAC responds to sufficiently large transmembrane potentials by transitioning to gated states in which ATP/ADP flux is reduced and calcium flux is increased. Two otherwise unrelated cytosolic proteins, tubulin, and α-synuclein (αSyn), dock with VDAC by a novel mechanism in which the transmembrane potential draws their disordered, polyanionic C-terminal domains into and through the VDAC channel, thus physically blocking the pore.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2021
Regulation of VDAC by α-synuclein (αSyn) is a rich and instructive example of protein-protein interactions catalyzed by a lipid membrane surface. αSyn, a peripheral membrane protein involved in Parkinson's disease pathology, is known to bind to membranes in a transient manner. αSyn's negatively charged C-terminal domain is then available to be electromechanically trapped by the VDAC β-barrel, a process that is observed in vitro as the reversible reduction of ion flow through a single voltage-biased VDAC nanopore.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2021
Composition and asymmetry of lipid membranes provide a means for regulation of trans-membrane permeability of ions and small molecules. The pH dependence of these processes plays an important role in the functioning and survival of cells. In this work, we study the pH dependence of membrane electrical resistance and capacitance using electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR) and neutron reflectometry (NR) measurements of biomimetic tethered bilayer lipid membranes (tBLMs).
View Article and Find Full Text PDFInterfaces between molecular organic architectures and oxidic substrates are a central feature of biosensors and applications of biomimetics in science and technology. For phospholipid bilayers, the large range of pH- and ionic strength-dependent surface charge densities adopted by titanium dioxide and other oxidic surfaces leads to a rich landscape of phenomena that provides exquisite control of membrane interactions with such substrates. Using neutron reflectometry measurements, we report sharp, reversible transitions that occur between closely surface-associated and weakly coupled states.
View Article and Find Full Text PDFWe demonstrate that a naturally occurring nanopore, the voltage-dependent anion channel (VDAC) of the mitochondrion, can be used to electromechanically trap and interrogate proteins bound to a lipid surface at the single-molecule level. Electromechanically probing α-synuclein (αSyn), an intrinsically disordered neuronal protein intimately associated with Parkinson's pathology, reveals wide variation in the time required for individual proteins to unbind from the same membrane surface. The observed distributions of unbinding times span up to 3 orders of magnitude and depend strongly on the lipid composition of the membrane; surprisingly, lipid membranes to which αSyn binds weakly are most likely to contain subpopulations in which electromechanically driven unbinding is very slow.
View Article and Find Full Text PDFThe voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane and an archetypical β-barrel channel. Here, we study the effects of temperature on VDAC channels reconstituted in planar lipid membranes at the single- and multichannel levels within the 20°C to 40°C range. The temperature dependence of conductance measured on a single channel in 1 M KCl shows an increase characterized by a 10°C temperature coefficient Q = 1.
View Article and Find Full Text PDFA framework is applied to quantify information gain from neutron or X-ray reflectometry experiments [Treece, Kienzle, Hoogerheide, Majkrzak, Lösche & Heinrich (2019). . , 47-59], in an in-depth investigation into the design of scattering contrast in biological and soft-matter surface architectures.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
June 2020
Post-translational modifications (PTMs) of proteins are recognized as crucial components of cell signaling pathways through modulating folding, altering stability, changing interactions with ligands, and, therefore, serving multiple regulatory functions. PTMs occur as covalent modifications of the protein's amino acid side chains or the length and composition of their termini. Here we study the functional consequences of PTMs for α-synuclein (αSyn) interactions with the nanopore of the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane.
View Article and Find Full Text PDFNeutron reflectometry (NR) is a powerful method for looking at the structures of multilayered thin films, including biomolecules on surfaces, particularly proteins at lipid interfaces. The spatial resolution of the film structure obtained through an NR experiment is limited by the maximum wavevector transfer at which the reflectivity can be measured. This maximum is in turn determined primarily by the scattering background, from incoherent scattering from a liquid reservoir or inelastic scattering from cell materials.
View Article and Find Full Text PDFSurface-supported lipid bilayers are used widely throughout the nanoscience community as cellular membrane mimics. For example, they are frequently employed in single-molecule atomic force microscopy (AFM) studies to shed light on membrane protein conformational dynamics and folding. However, in AFM as well as in other surface-sensing techniques, the close proximity of the supporting surface raises questions about preservation of the biochemical activity.
View Article and Find Full Text PDFIt is well established that α-synuclein (α-syn) binding from solution to the surface of membranes composed of negatively charged and/or non-lamellar lipids can be characterized by equilibrium dissociation constants of tens of micromolar. Previously, we have found that a naturally occurring nanopore of the mitochondrial voltage-dependent anion channel (VDAC), reconstituted into planar bilayers of a plant-derived lipid, responds to α-syn at nanomolar solution concentrations. Here, using lipid mixtures that mimic the composition of mitochondrial outer membranes, we show that functionally important binding does indeed take place in the nanomolar range.
View Article and Find Full Text PDFA framework based on Bayesian statistics and information theory is developed to optimize the design of surface-sensitive reflectometry experiments. The method applies to model-based reflectivity data analysis, uses simulated reflectivity data and is capable of optimizing experiments that probe a sample under more than one condition. After presentation of the underlying theory and its implementation, the framework is applied to exemplary test problems for which the information gain Δ is determined.
View Article and Find Full Text PDFNeutron reflectivity (NR) has emerged as a powerful technique to study the structure and behavior of membrane proteins at planar lipid interfaces. Integral membrane proteins (IMPs) remain a significant challenge for NR owing to the difficulty of forming complete bilayers with sufficient protein density for scattering techniques. One strategy to achieve high protein density on a solid substrate is the capture of detergent-stabilized, affinity-tagged IMPs on a nitrilotriacetic acid (NTA)-functionalized self-assembled monolayer (SAM), followed by reconstitution into the lipids of interest.
View Article and Find Full Text PDF