Publications by authors named "David P Hajjar"

Background And Purpose: Intrahepatic cholestasis is mainly caused by dysfunction of bile secretion and has limited effective treatment. Rosiglitazone is a synthetic agonist of PPARγ, whose endogenous agonist is 15-deoxy-Δ -PGJ (15d-PGJ ). Reticulon 4B (Nogo-B) is the detectable Nogo protein family member in the liver and secreted into circulation.

View Article and Find Full Text PDF

The complex relationship between diet and metabolism is an important contributor to cellular metabolism and health. Over the past few decades, a central role for mammalian target of rapamycin (mTOR) in the regulation of multiple cellular processes, including the response to food intake, maintaining homeostasis, and the pathogenesis of disease, has been shown. Herein, we first review our current understanding of the biochemical functions of mTOR and its response to fluctuations in hormone levels, like insulin.

View Article and Find Full Text PDF

Cholesterol 25-hydroxylase (CH25H) catalyzes the production of 25-hydroxycholesterol (25-HC), an oxysterol that can play an important role in different biological processes. However, the mechanisms regulating CH25H expression have not been fully elucidated. In this study, we determined that CH25H is highly expressed in mouse liver and peritoneal macrophages.

View Article and Find Full Text PDF

There is emerging evidence identifying microRNAs (miRNAs) as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1) in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2.

View Article and Find Full Text PDF

Expression of ATP-binding cassette transporter G1 (ABCG1), a molecule facilitating cholesterol efflux to HDL, is activated by liver X receptor (LXR). In this study, we investigated if inhibition of ERK1/2 can activate macrophage ABCG1 expression and functions. MEK1/2 inhibitors, PD98059 and U0126, increased ABCG1 mRNA and protein expression, and activated the natural ABCG1 promoter but not the promoter with the LXR responsive element (LXRE) deletion.

View Article and Find Full Text PDF

The interplay that governs chronic diseases through pathways specifically associated with chronic inflammation remains undefined. Many metabolic events have been identified during the injury and repair process. Nonetheless, the cellular events that control the pathogenesis of inflammation-induced disease have not been fully characterized.

View Article and Find Full Text PDF

Vascular inflammation is central to the pathogenesis of the atherosclerotic lesion. In the setting of hypercholesterolemia, vascular inflammation accelerates the accumulation of cholesterol within arterial smooth muscle cells, macrophages, and other immune cells. In disorders such as obesity, diabetes, and thrombosis, a myriad of interactions between sterol metabolites and inflammatory mediators exacerbate cholesterol deposition in the vessel wall, leading to the well-known consequences of stroke, transient ischemic attack, myocardial infarction, and peripheral vascular insufficiency.

View Article and Find Full Text PDF

Objective: Activation of liver X receptor (LXR) inhibits atherosclerosis but induces hypertriglyceridemia. In vitro, it has been shown that mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor synergizes LXR ligand-induced macrophage ABCA1 expression and cholesterol efflux. In this study, we determined whether MEK1/2 (U0126) and LXR ligand (T0901317) can have a synergistic effect on the reduction of atherosclerosis while eliminating LXR ligand-induced fatty livers and hypertriglyceridemia.

View Article and Find Full Text PDF

LXR (liver X receptor) is a ligand-activated transcription factor and plays an important role in regulation of lipid homoeostasis and inflammation. Several studies indicate that LXR inhibits IFN-γ (interferon γ)-induced biological responses; however, the influence of LXR on IFN-γ expression has not been fully elucidated. In the present study, we investigated the effects of LXR activation on IFN-γ expression at different levels.

View Article and Find Full Text PDF

Macrophage adipocyte fatty acid-binding protein (FABP4) plays an important role in foam cell formation and development of atherosclerosis. Tamoxifen inhibits this disease process. In the present study, we determined whether the anti-atherogenic property of tamoxifen was related to its inhibition of macrophage FABP4 expression.

View Article and Find Full Text PDF

Protein 3-nitrotyrosine (3-NT) formation is frequently regarded as a simple biomarker of disease, an irreversible posttranslational modification that can disrupt protein structure and function. Nevertheless, evidence that protein 3-NT modifications may be site selective and reversible, thus allowing for physiological regulation of protein activity, has begun to emerge. We have previously reported that cyclooxygenase (COX)-1 undergoes heme-dependent nitration of Tyr(385), an internal and catalytically essential residue.

View Article and Find Full Text PDF

Over the past three decades, age-adjusted rates of cardiovascular morbidity and mortality have fallen in the United States, but the prevalence of obesity and associated metabolic disorders has risen dramatically. Recent studies have begun to unravel the complex linkages between adipose and vascular tissues that may accelerate the development of atherosclerosis in the context of obesity. Experimental models indicate that inflammation and oxidative stress, which mutually amplify each other within the vasculature and in visceral fat, are key processes that drive the initiation, progression, and subsequent rupture of the atherosclerotic lesion.

View Article and Find Full Text PDF

IL-5 stimulates production of T15/EO6 IgM antibodies that can block the uptake of oxidized low density lipoprotein by macrophages, whereas a deficiency in macrophage IL-5 expression accelerates development of atherosclerosis. Liver X receptors (LXRs) are ligand-activated transcription factors that can induce macrophage ABCA1 expression and cholesterol efflux, thereby inhibiting the development of atherosclerosis. However, it remains unknown whether additional mechanisms, such as the regulation of macrophage IL-5 expression, are related to the anti-atherogenic properties of LXR.

View Article and Find Full Text PDF

Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors.

View Article and Find Full Text PDF

Objective: Macrophage adipocyte fatty acid binding protein (FABP4) plays an important role in the development of atherosclerosis. We previously reported that dexamethasone induces macrophage FABP4 mRNA expression. Statins inhibit FABP4 expression.

View Article and Find Full Text PDF
Article Synopsis
  • Nitric oxide (NO) is produced by three NO synthase (NOS) enzymes, with endothelial NOS (eNOS) protecting against hypertension and inducible NOS (iNOS) being linked to disease during atherogenesis.
  • In a study using mice, female wild-type (WT) mice showed resistance to thrombosis, but this resistance decreased when iNOS was deleted, while male mice were equally affected regardless of iNOS presence.
  • The research indicates that iNOS-derived NO might help protect female mice from thrombotic issues, suggesting a complex role for iNOS in vascular health despite its association with disease.
View Article and Find Full Text PDF

Cyclooxygenase (COX)-2 and inducible nitric oxide (NO) synthase (iNOS) are responsive to a wide array of inflammatory stimuli, have been localized to vascular smooth muscle cells (SMCs), and are intimately linked to the progression of vascular disease, including atherosclerotic lesion formation. We and others have shown that the production and subsequent impact of COX products appear to be correlative with the status of NO synthesis. This study examined the impact of inflammation-driven NO production on COX-2 expression in SMCs.

View Article and Find Full Text PDF

The endothelium generates powerful mediators that regulate blood flow, temper inflammation and maintain a homeostatic environment to prevent both the initiation and progression of vascular disease. Nitric oxide (NO) is arguably the single most influential molecule in terms of dictating blood vessel homeostasis. In addition to direct effects associated with altered NO production (e.

View Article and Find Full Text PDF
Article Synopsis
  • Prostaglandin biosynthesis is facilitated by COX enzymes, which have two distinct active sites, but their functions and regulatory mechanisms are not fully understood.
  • Reactive nitrogen species can modify COX enzymes and impact prostaglandin production; particularly, COX-1 can be inactivated through nitration of a key residue, Tyr385.
  • The study demonstrates that when the COX-1 active site is occupied by substrate, it prevents nitration at Tyr385 and shifts nitration to other sites, thereby maintaining the enzyme's catalytic activity.
View Article and Find Full Text PDF

ATP-binding cassette transporter A1 (ABCA1), a molecule mediating free cholesterol efflux from peripheral tissues to apoAI and high density lipoprotein (HDL), inhibits the formation of lipid-laden macrophage/foam cells and the development of atherosclerosis. ERK1/2 are important signaling molecules regulating cellular growth and differentiation. The ERK1/2 signaling pathway is implicated in cardiac development and hypertrophy.

View Article and Find Full Text PDF

Thiazolidinediones, a class of drugs for the treatment of type-2 diabetes, are synthetic ligands for peroxisome proliferator-activated receptor-gamma. They have been demonstrated to possess cardioprotective effects in humans and anti-atherogenic properties in animal models. However, the question remains whether a peroxisome proliferator-activated receptor-gamma ligand can reverse the development of atherosclerosis.

View Article and Find Full Text PDF

Statins have been demonstrated to elicit a broad range of cellular events resulting in an attenuation of the inflammatory response and enhanced protection to the components of the vessel wall. The present study was designed to examine the effect of pitavastatin on pathways associated with the proinflammatory gene, early growth response (Egr)-1, in human vascular smooth muscle cells. Pretreatment with pitavastatin resulted in a dose-dependent reduction in Egr-1 protein and suppressed Egr-1 mRNA expression in response to phorbol 12-myristate 13-acetate (PMA).

View Article and Find Full Text PDF

Despite the multifactorial nature of atherosclerosis, substantial evidence has established inflammation as an often surreptitious, yet critical and unifying driving force which promotes disease progression. To this end, research has defined molecular networks initiated by cytokines, growth factors and other pro-inflammatory molecules which promote hallmarks of atherosclerosis such as endothelial dysfunction, macrophage infiltration, LDL oxidation, cell proliferation and thrombosis. Although commonly associated with risk factors such as dyslipidemia, diabetes and hypertension, the global etiology of atherosclerosis may be alternatively attributed to underlying anthropological pressures.

View Article and Find Full Text PDF

Nitration of tyrosine residues by nitric oxide (NO)-derived species results in the accumulation of 3-nitrotyrosine in proteins, a hallmark of nitrosative stress in cells and tissues. Tyrosine nitration is recognized as one of the multiple signaling modalities used by NO-derived species for the regulation of protein structure and function in health and disease. Various methods have been described for the quantification of protein 3-nitrotyrosine residues, and several strategies have been presented toward the goal of proteome-wide identification of protein tyrosine modification sites.

View Article and Find Full Text PDF

Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression.

View Article and Find Full Text PDF