Purpose: The field of genetics and genomics continues to expand at an unprecedented pace. As scientific knowledge is translated to clinical practice, genomic information is routinely being used in preventive, diagnostic, and therapeutic decision-making across a variety of clinical practice areas. As adoption of genomic medicine further evolves, health professionals will be required to stay abreast of new genetic discoveries and technologies and implementation of these advances within their scope of practice will be indicated.
View Article and Find Full Text PDFBackground: The analysis of RNA sequences, once a small niche field for a small collection of scientists whose primary emphasis was the structure and function of a few RNA molecules, has grown most significantly with the realizations that 1) RNA is implicated in many more functions within the cell, and 2) the analysis of ribosomal RNA sequences is revealing more about the microbial ecology within all biological and environmental systems. The accurate and rapid alignment of these RNA sequences is essential to decipher the maximum amount of information from this data.
Methods: Two computer systems that utilize the Gutell lab's RNA Comparative Analysis Database (rCAD) were developed to align sequences to an existing template alignment available at the Gutell lab's Comparative RNA Web (CRW) Site.
Proceedings (IEEE Int Conf Bioinformatics Biomed)
December 2012
The rapid determination of nucleic acid sequences is increasing the number of sequences that are available. Inherent in a template or seed alignment is the culmination of structural and functional constraints that are selecting those mutations that are viable during the evolution of the RNA. While we might not understand these structural and functional, template-based alignment programs utilize the patterns of sequence conservation to encapsulate the characteristics of viable RNA sequences that are aligned properly.
View Article and Find Full Text PDFRNA is directly associated with a growing number of functions within the cell. The accurate prediction of different RNA higher-order structures from their nucleic acid sequences will provide insight into their functions and molecular mechanics. We have been determining statistical potentials for a collection of structural elements that is larger than the number of structural elements determined with experimentally determined energy values.
View Article and Find Full Text PDFThe accurate prediction of an RNA's three-dimensional structure from its "primary structure" will have a tremendous influence on the experimental design and its interpretation and ultimately our understanding of the many functions of RNA. This paper presents a general coarse-grained (CG) potential for modeling RNA 3-D structures. Each nucleotide is represented by five pseudo atoms, two for the backbone (one for the phosphate and another for the sugar) and three for the base to represent base-stacking interactions.
View Article and Find Full Text PDFThe accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure.
View Article and Find Full Text PDFBirth Defects Res A Clin Mol Teratol
April 2004
Background: Ethanol is known to induce a wide variety of gestational anomalies, including skeletal malformations. Gestational ethanol exposure in mice has been shown to induce postaxial digit loss (ectrodactyly). How ethanol induces limb malformations is not understood.
View Article and Find Full Text PDF