Publications by authors named "David Orlicky"

Toxicant exposure can lead to acute liver injury, characterized by hepatic reprogramming and wound healing. Hepatic stellate cells (HSC) play a key role in liver regeneration during wound healing by secreting fibrogenic factors and production of extracellular matrix (ECM). However, repetitive injury to the liver can lead to extensive scarring and liver fibrosis, indicating HSCs coordinate both regeneration and disease.

View Article and Find Full Text PDF

Background: Intestinal inflammation is a common factor in ~70% of patients diagnosed with primary sclerosing cholangitis. The TNF∆ARE+/- mouse overexpresses TNFα and spontaneously develops ileitis after weaning. The aim of this study was to examine the influence of ileitis and TNFα overexpression on hepatic injury, fibrosis, inflammation, and bile acid homeostasis.

View Article and Find Full Text PDF

One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines.

View Article and Find Full Text PDF

1,4-Dioxane (DX), an emerging water contaminant, is classified as a Group 2B liver carcinogen based on animal studies. Understanding of the mechanisms of action of DX liver carcinogenicity is important for the risk assessment and control of this environmental pollution. Previous studies demonstrate that high-dose DX exposure in mice through drinking water for up to 3 months caused liver mild cytotoxicity and oxidative DNA damage, a process correlating with hepatic CYP2E1 induction and elevated oxidative stress.

View Article and Find Full Text PDF

Background And Aims: Chronic liver disease due to metabolic dysfunction-associated steatohepatitis (MASH) is a rapidly increasing global epidemic. MASH progression is a consequence of the complex interplay between inflammatory insults and dysregulated hepatic immune responses. T lymphocytes have been shown to accumulate in the liver during MASH, but the cause and consequence of T cell accumulation in the liver remain unclear.

View Article and Find Full Text PDF

Hereditary fructose intolerance (HFI) is a painful and potentially lethal genetic disease caused by a mutation in aldolase B resulting in accumulation of fructose-1-phosphate (F1P). No cure exists for HFI and treatment is limited to avoid exposure to fructose and sugar. Using aldolase B deficient mice, here we identify a yet unrecognized metabolic event activated in HFI and associated with the progression of the disease.

View Article and Find Full Text PDF
Article Synopsis
  • Cystathionine beta-synthase-deficient homocystinuria (HCU) is a serious disorder affecting sulfur metabolism, where treatment with betaine is less effective in mice showing low levels of tetrahydrofolate (THF).
  • Mice models of HCU displayed a significant accumulation of certain metabolites and a repressed expression of the enzyme dihydrofolate reductase (DHFR), which is necessary for THF generation and metabolic processes.
  • The dysfunction in one-carbon metabolism in HCU not only reduces the effectiveness of betaine treatment but also contributes to complications such as decreased nitric oxide (NO) levels, indicating broader implications for disease pathogenesis.
View Article and Find Full Text PDF

Introduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7).

View Article and Find Full Text PDF

Purpose: Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of chronic kidney disease and end-stage renal disease. One potential mechanism underlying cellular dysfunction contributing to kidney disease is aberrant protein post-translational modifications. Lysine acetylation is associated with cellular metabolic flux and is thought to be altered in patients with diabetes and dysfunctional renal metabolism.

View Article and Find Full Text PDF

Pelvic organ prolapse (POP), a downward descent of the vagina and/or uterus through the vaginal canal, is a prevalent condition affecting up to 40% of women. Several risk factors of POP have been identified, including childbirth, connective tissue defects, and chronic intra-abdominal pressure; however, the underlying etiologies of POP development are not fully understood, leading to a high burden on patients and the healthcare systems. The uterosacral ligaments are key support structures of the uterus and upper vagina.

View Article and Find Full Text PDF
Article Synopsis
  • Acute kidney injury (AKI) significantly impacts energy metabolism in various organs, particularly the liver, as shown in a study using murine models.
  • The study found that 24 hours post-AKI, the liver displayed unique metabolic changes, including increased glycolysis, depleted glutathione levels, and ATP depletion despite stable mitochondrial respiration.
  • These findings suggest a complex interplay between the liver and kidneys during AKI, highlighting the liver's role in systemic oxidative stress and metabolic adaptation.
View Article and Find Full Text PDF

Phage viruses shape the evolution and virulence of their bacterial hosts. The genome encodes several stress-inducible prophages. The Gifsy-1 prophage terminase protein, whose canonical function is to process phage DNA for packaging in the virus head, unexpectedly acts as a transfer ribonuclease (tRNase) under oxidative stress, cleaving the anticodon loop of tRNA.

View Article and Find Full Text PDF

Intraepithelial lymphocytes (IELs) are T cells important for the maintenance of barrier integrity in the intestine. Colon IELs are significantly reduced in both MyD88-deficient mice and those lacking an intact microbiota, suggesting that MyD88-mediated detection of bacterial products is important for the recruitment and/or retention of these cells. Here, using conditionally deficient MyD88 mice, we show that myeloid cells are the key mediators of TCRαβ+ IEL recruitment to the colon.

View Article and Find Full Text PDF
Article Synopsis
  • MASH (Metabolic Dysfunction-Associated Steatohepatitis) is a liver disease that's becoming more common and is linked to inflammation and immune response issues in the liver.
  • Researchers studied T cells (a type of immune cell) in both human livers with cirrhosis and in a mouse model to see how they behave during this disease.
  • They found that T cells in the liver got activated and increased in number because of MASH, which could help identify what triggers T cell activity in liver diseases.
View Article and Find Full Text PDF

Colorectal cancer has been linked to chronic colitis and red meat consumption, which can increase colonic iron and heme. Heme oxygenase-1 ( ) metabolizes heme and releases ferrous iron, but its role in colonic tumorigenesis is not well-described. Recent studies suggest that ferroptosis, the iron-dependent form of cell death, protects against colonic tumorigenesis.

View Article and Find Full Text PDF

Background: The developmental immaturity of the innate immune system helps explains the increased risk of infection in the neonatal period. Importantly, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for the prevention of hepatocyte apoptosis in adult animals, yet whether developmental immaturity of these pathways increases the risk of hepatic injury in the neonatal period is unknown.

Methods: Using a murine model of endotoxemia (LPS 5 mg/kg IP x 1) in neonatal (P3) and adult mice, we evaluated histologic evidence of hepatic injury and apoptosis, presence of p65/NFκB and c-Jun/AP1 activation and associated transcriptional regulation of apoptotic genes.

View Article and Find Full Text PDF

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a major global health concern, representing one of the leading causes of cancer-related deaths. Despite various treatment options, the prognosis for HCC patients remains poor, emphasizing the need for a deeper understanding of the factors contributing to HCC development. This study investigates the role of poly(ADP-ribosyl)ation in hepatocyte maturation and its impact on hepatobiliary carcinogenesis.

View Article and Find Full Text PDF

Background & Aims: Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus.

View Article and Find Full Text PDF

Excessive intake of sugar, and particularly fructose, is closely associated with the development and progression of metabolic syndrome in humans and animal models. However, genetic disorders in fructose metabolism have very different consequences. While the deficiency of fructokinase, the first enzyme involved in fructose metabolism, is benign and somewhat desirable, missense mutations in the second enzyme, aldolase B, causes a very dramatic and sometimes lethal condition known as hereditary fructose intolerance (HFI).

View Article and Find Full Text PDF

Background: We have developed a mouse model of Parenteral Nutrition Associated Cholestasis (PNAC) in which combining intestinal inflammation and PN infusion results in cholestasis, hepatic macrophage activation, and transcriptional suppression of bile acid and sterol signaling and transport. In the liver, the master circadian gene regulators Bmal/Arntl and Clock drive circadian modulation of hepatic functions, including bile acid synthesis. Once activated, Bmal and Clock are downregulated by several transcription factors including Reverbα (Nr1d1), Dbp (Dbp), Dec1/2 (Bhlhe40/41), Cry1/2 (Cry1/2) and Per1/2 (Per1/2).

View Article and Find Full Text PDF

Burn injuries are associated with significant morbidity and mortality, and lungs are the most common organ to fail. Interestingly, patients with alcohol intoxication at the time of burn have worse clinical outcomes, including pulmonary complications. Using a clinically relevant murine model, we have previously reported that episodic ethanol exposure before burn exacerbated lung inflammation.

View Article and Find Full Text PDF

The Earth's population is aging, and by 2050, one of six people will be 65 years or older. Therefore, proper treatment of injuries that disproportionately impact people of advanced age will be more important. Clinical studies reveal people 65 years or older account for 16.

View Article and Find Full Text PDF

1,4-Dioxane (DX) is an emerging drinking water contaminant worldwide, which poses a threat to public health due to its demonstrated liver carcinogenicity and potential for human exposure. The lack of drinking water standards for DX is attributed to undetermined mechanisms of DX carcinogenicity. This mini-review provides a brief discussion of a series of mechanistic studies, wherein unique mouse models were exposed to DX in drinking water to elucidate redox changes associated with DX cytotoxicity and genotoxicity.

View Article and Find Full Text PDF

Prerenal azotemia (PRA) is a major cause of acute kidney injury and uncommonly studied in preclinical models. We sought to develop and characterize a novel model of PRA that meets the clinical definition: acute loss of glomerular filtration rate (GFR) that returns to baseline with resuscitation. Adult male C57BL/6J wild-type (WT) and mice were studied.

View Article and Find Full Text PDF