In the accompanying paper, we described evolving a lipase to the point where variants were soluble, stable and capable of degrading C8 TAG and C8 esters. These variants were tested for their ability to survive in an environment that might be encountered in a washing machine. Unfortunately, they were inactivated both by treatment with a protease used in laundry detergents and by very low concentrations of sodium dodecyl sulfate (SDS).
View Article and Find Full Text PDFAn enzyme must be soluble, stable, active and easy to produce to be useful in industrial applications. Not all enzymes possess these attributes. We set out to determine how many changes are required to convert an enzyme with poor properties into one that has useful properties.
View Article and Find Full Text PDFElucidation of kinetics of photocatalyzed chemical mechanisms occurring at interfaces (gas-solid, liquid-solid) has been challenging. We summarize here five lessons learned over five decades. 1.
View Article and Find Full Text PDFMetal ion-dependent, organophosphate-degrading enzymes (OP hydrolases) have received increasing attention due to their ability to degrade and thus detoxify commonly used pesticides and nerve agents such as sarin and VX. These enzymes thus garner strong potential as bioremediators. The OP hydrolase from Agrobacterium radiobacter (OpdA) is one of the most efficient members of this group of enzymes.
View Article and Find Full Text PDFMetallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e.
View Article and Find Full Text PDFAntibiotic resistance has emerged as a major threat to global health care. This is largely due to the fact that many pathogens have developed strategies to acquire resistance to antibiotics. Metallo-β-lactamases (MBL) have evolved to inactivate most of the commonly used β-lactam antibiotics.
View Article and Find Full Text PDFThe diesterase Rv0805 from Mycobacterium tuberculosis is a dinuclear metallohydrolase that plays an important role in signal transduction by controlling the intracellular levels of cyclic nucleotides. As Rv0805 is essential for mycobacterial growth it is a promising new target for the development of chemotherapeutics to treat tuberculosis. The in vivo metal-ion composition of Rv0805 is subject to debate.
View Article and Find Full Text PDFEnzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations.
View Article and Find Full Text PDFMany organophosphates (OPs) are used as pesticides in agriculture. They pose a severe health hazard due to their inhibitory effect on acetylcholinesterase. Therefore, detoxification of water and soil contaminated by OPs is important.
View Article and Find Full Text PDFThe hydrolysis of sulfate ester conjugates is frequently required prior to analysis for a range of analytical techniques including gas chromatography-mass spectrometry (GC-MS). Sulfate hydrolysis may be achieved with commercial crude arylsulfatase enzyme preparations such as that derived from Helix pomatia but these contain additional enzyme activities such as glucuronidase, oxidase, and reductase that make them unsuitable for many analytical applications. Strong acid can also be used to hydrolyze sulfate esters but this can lead to analyte degradation or increased matrix interference.
View Article and Find Full Text PDFDirected evolution is a common tool employed to generate enzymes suitable for industrial use. High thermal stability is often advantageous or even a requirement for biocatalysts, as such the evolution of protein stability is of practical as well as academic interest. Even when evolving enzymes for new or improved catalytic functions, stability is an important factor since it can limit the accumulation rate and number of desired active site mutations.
View Article and Find Full Text PDFThe ease with which enzymes can be adapted from their native roles and engineered to function specifically for industrial or commercial applications is crucial to enabling enzyme technology to advance beyond its current state. Directed evolution is a powerful tool for engineering enzymes with improved physical and catalytic properties and can be used to evolve enzymes where lack of structural information may thwart the use of rational design. In this study, we take the versatile and diverse α/β hydrolase fold framework, in the form of dienelactone hydrolase, and evolve it over three unique sequential evolutions with a total of 14 rounds of screening to generate a series of enzyme variants.
View Article and Find Full Text PDFInterleukin-3 (IL-3) is a cytokine secreted by mast cells and activated T-cells known to be an important regulator of differentiation, survival, proliferation and activation of a range of haemopoietic lineages. The effects of IL-3 on target cells are mediated by a transmembrane receptor system composed of a cytokine-specific α-subunit and a β-subunit, the principal signalling entity. In the mouse, two β-subunits have co-evolved: a common β-subunit (βc) shared between IL-3 and the related cytokines IL-5 and granulocyte/macrophage colony-stimulating factor (GM-CSF); and an IL-3-specific β-subunit (βIL-3).
View Article and Find Full Text PDFMetal ion-dependent, organophosphate-degrading enzymes have acquired increasing attention due to their ability to degrade and thus detoxify commonly used pesticides and nerve agents such as sarin. The best characterized of these enzymes are from Pseudomonas diminuta (OPH) and Agrobacterium radiobacter (OpdA). Despite high sequence homology (>90 % identity) and conserved metal ion coordination these enzymes display considerable variations in substrate specificity, metal ion affinity/preference and reaction mechanism.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
July 2014
Dienelactone hydrolase (DLH) is a monomeric protein with a simple α/β-hydrolase fold structure. It readily crystallizes in space group P2₁2₁2₁ from either a phosphate or ammonium sulfate precipitation buffer. Here, the structure of DLH at 1.
View Article and Find Full Text PDFA library of steroid glucuronides was prepared using the glucuronylsynthase derived from Escherichia coliβ-glucuronidase, followed by purification using solid-phase extraction. A representative range of steroid substrates were screened for synthesis on the milligram scale under optimised conditions with conversions dependent on steroid substitution and stereochemistry. Epiandrosterone (3β-hydroxy-5α-androstan-17-one) provided the highest conversion of 90% (84% isolated yield).
View Article and Find Full Text PDFOrganophosphorus (OP) pesticides are a diverse class of acetylcholinesterase (AChE) inhibitors that are responsible for tremendous morbidity and mortality worldwide, killing approximately 300,000 people annually. Enzymatic hydrolysis of OPs is a potential therapy for acute poisoning. OpdA, an OP hydrolase isolated from Agrobacterium radiobacter, has been shown to decrease lethality in rodent models of OP poisoning.
View Article and Find Full Text PDFBinuclear metallohydrolases are a large and diverse family of enzymes that are involved in numerous metabolic functions. An increasing number of members find applications as drug targets or in processes such as bioremediation. It is thus essential to have an assay available that allows the rapid and reliable determination of relevant catalytic parameters (k cat, K m, and k cat/K m).
View Article and Find Full Text PDFAnnually thousands of people die or suffer from organophosphate (pesticide) poisoning. In order to remove these toxic compounds from the environment, the use of enzymes as bioremediators has been proposed. We report here a Ser127Ala mutant based on the enzyme glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.
View Article and Find Full Text PDFAn enhanced understanding of the metal ion binding and active site structural features of phosphoesterases such as the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ), and the organophosphate degrading agent from Agrobacterium radiobacter (OpdA) have important consequences for potential applications. Coupled with investigations of the metalloenzymes, programs of study to synthesise and characterise model complexes based on these metalloenzymes can add to our understanding of structure and function of the enzymes themselves. This review summarises some of our work and illustrates the significance and contributions of model studies to knowledge in the area.
View Article and Find Full Text PDFMetallo-β-lactamases (MBLs) are a family of metalloenzymes that are capable of hydrolyzing β-lactam antibiotics and are an important means by which bacterial pathogens use to inactivate antibiotics. A database search of the available amino acid sequences from Serratia proteamaculans indicates the presence of an unusual MBL. A full length amino acid sequence alignment indicates overall homology to B3-type MBLs, but also suggests considerable variations in the active site, notably among residues that are relevant to metal ion binding.
View Article and Find Full Text PDFInsect carboxylesterases from the αEsterase gene cluster, such as αE7 (also known as E3) from the Australian sheep blowfly Lucilia cuprina (LcαE7), play an important physiological role in lipid metabolism and are implicated in the detoxification of organophosphate (OP) insecticides. Despite the importance of OPs to agriculture and the spread of insect-borne diseases, the molecular basis for the ability of α-carboxylesterases to confer OP resistance to insects is poorly understood. In this work, we used laboratory evolution to increase the thermal stability of LcαE7, allowing its overexpression in Escherichia coli and structure determination.
View Article and Find Full Text PDFA method is described for using 96-well plates to prepare libraries of Escherichia coli cultures for screening a library of gene variants. This approach bypasses colony-picking to allow standard molecular biology laboratories to carry out directed evolution efficiently with a 96-well plate-reader and multichannel pipettes. Initial screens are applied to cultures that are rapidly prepared by diluting transformed cells so that an average of four cells starts each culture.
View Article and Find Full Text PDFLow protein solubility is a problem in many areas of protein science. Although chemical methods have been developed to solubilize proteins these are not always effective and add to the cost of producing the protein. One way of overcoming these difficulties is to evolve the protein to be more soluble.
View Article and Find Full Text PDF