Publications by authors named "David Oehme"

Article Synopsis
  • The study investigated the clinical outcomes, fusion rates, and complications of lateral lumbar interbody fusion (LLIF) in Australia, focusing on the effects of recombinant human bone morphogenetic protein-2 (rhBMP-2) compared to other graft materials.
  • It involved a retrospective analysis of 343 patients operated on between 2011 and 2021, with significant improvements observed in patient-reported outcomes and a total complication rate of 15%.
  • Results showed that rhBMP-2 led to higher fusion rates at both 6 and 12 months, suggesting its superiority over non-rhBMP-2 grafts without increasing complication rates.
View Article and Find Full Text PDF

Study Design: Reliability study.

Objective: To evaluate the applicability and reliability of 9.4T magnetic resonance imaging (MRI) in the assessment of degenerative disc disease compared with 3T MRI.

View Article and Find Full Text PDF

Study Design: Large animal research.

Objective: Lumbar discectomy is the most commonly performed spinal surgical procedure. We investigated 2 large animal models of lumbar discectomy in order to study the regenerative capacity of mesenchymal stem cells following disc injury.

View Article and Find Full Text PDF

Background Context: Neural compression associated with lumbar disc herniation is usually managed surgically by microdiscectomy. However, 10%-20% of patients re-present with debilitating back pain, and approximately 15% require further surgery.

Purpose: Using an ovine model of microdiscectomy, the present study investigated the relative potential of pentosan polysulfate-primed mesenchymal progenitor cells (pMPCs) or MPC alone implanted into the lesion site to facilitate disc recovery.

View Article and Find Full Text PDF

Intervertebral disc degeneration is a significant contributor to the development of back pain and the leading cause of disability worldwide. Numerous animal models of intervertebral disc degeneration have been developed. The ideal animal model should closely mimic the human intervertebral disc with regard to morphology, biomechanical properties and the absence of notochordal cells.

View Article and Find Full Text PDF

Lower back pain is the leading cause of disability worldwide. Discogenic pain secondary to intervertebral disc degeneration is a significant cause of low back pain. Disc degeneration is a complex multifactorial process.

View Article and Find Full Text PDF

OBJECTIVE Disc degeneration and associated low-back pain are major causes of suffering and disability. The authors examined the potential of mesenchymal precursor cells (MPCs), when formulated with pentosan polysulfate (PPS), to ameliorate disc degeneration in an ovine model. METHODS Twenty-four sheep had annular incisions made at L2-3, L3-4, and L4-5 to induce degeneration.

View Article and Find Full Text PDF

Background Aims: Over the past decade, mounting evidence has shown that mesenchymal stromal cells have the potential to exert protective and reparative effects in a variety of disease settings. Clinical trials are being increasingly established to investigate the therapeutic potential of these cells; however, several safety concerns remain to be addressed, of which dosage safety for intravenous administration is paramount. Published safety studies thus far have predominantly been carried out in small-animal models, whereas data for high-dose allogeneic intravenous administration in large-animal models are limited.

View Article and Find Full Text PDF

Low back pain and degenerative disc disease are a significant cause of pain and disability worldwide. Advances in regenerative medicine and cell-based therapies, particularly the transplantation of mesenchymal stem cells and intervertebral disc chondrocytes, have led to the publication of numerous studies and clinical trials utilising these biological therapies to treat degenerative spinal conditions, often reporting favourable outcomes. Stem cell mediated disc regeneration may bridge the gap between the two current alternatives for patients with low back pain, often inadequate pain management at one end and invasive surgery at the other.

View Article and Find Full Text PDF

Degenerative conditions of the lumbar spine are extremely common. Ninety percent of people over the age of 60 years have degenerative change on imaging; however, only a small minority of people will require spine surgery (Hicks et al. Spine (Phila Pa 1976) 34(12):1301-1306, 2009).

View Article and Find Full Text PDF

Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc (IVD) degeneration is accepted as a common cause of low back pain. Initially, this is characterized by a loss of proteoglycans from the nucleus pulposus resulting in loss of tissue hydration and hydrostatic pressure.

View Article and Find Full Text PDF

Object: Following microdiscectomy, discs generally fail to undergo spontaneous regeneration and patients may experience chronic low-back pain and recurrent disc prolapse. In published studies, formulations of mesenchymal progenitor cells combined with pentosan polysulfate (MPCs+PPS) have been shown to regenerate disc tissue in animal models, suggesting that this approach may provide a useful adjunct to microdiscectomy. The goal of this preclinical laboratory study was to determine if the transplantation of MPCs+PPS, embedded in a gelatin/fibrin scaffold (SCAF), and transplanted into a defect created by microdiscectomy, could promote disc regeneration.

View Article and Find Full Text PDF

Spinal surgery involves the bone-cartilage-neural interface. It is a field of surgery that is rapidly changing and evolving; not only through the development of novel techniques, approaches and devices but also through evidence from large clinical trials assessing indications, efficacy and outcomes. The use of biologics in spine surgery has now become widespread.

View Article and Find Full Text PDF

The sheep is becoming increasingly used as a large animal model for preclinical spine surgery studies. Access to the ovine lumbar intervertebral discs has traditionally been via an anterior or anterolateral approach, which requires larger wound incisions and, at times, significant abdominal retraction. We present a new minimally invasive operative technique for a far-lateral approach to the ovine lumbar spine that allows for smaller incisions, excellent visualisation of intervertebral discs, and minimal abdominal retraction and is well tolerated by animals with minimal morbidity.

View Article and Find Full Text PDF