Publications by authors named "David O Toft"

Purpose: To determine the maximum tolerated dose (MTD) and characterize the dose-limiting toxicities (DLT) of tanespimycin when given in combination with bortezomib.

Experimental Design: Phase I dose-escalating trial using a standard cohort "3+3" design performed in patients with advanced solid tumors. Patients were given tanespimycin and bortezomib twice weekly for 2 weeks in a 3 week cycle (days 1, 4, 8, 11 every 21 days).

View Article and Find Full Text PDF

The small acidic protein p23 is best described as a co-chaperone of Hsp90, an essential molecular chaperone in eukaryotes. p23 binds to the ATP-bound form of Hsp90 and stabilizes the Hsp90-client protein complex by slowing down ATP turnover. The stabilizing activity of p23 was first characterized in studies of steroid receptor-Hsp90 complexes.

View Article and Find Full Text PDF

Purpose: To determine the maximum tolerated dose (MTD) and characterize the dose-limiting toxicities (DLT) of 17-AAG, gemcitabine and/or cisplatin. Levels of the proteins Hsp90, Hsp70 and ILK were measured in peripheral blood mononuclear cell (PMBC) lysates to assess the effects of 17-AAG.

Experimental Design: Phase I dose-escalating trial using a "3 + 3" design performed in patients with advanced solid tumors.

View Article and Find Full Text PDF

Prostate cancer progression to the androgen-independent (AI) state involves acquisition of pathways that allow tumor growth under low-androgen conditions. We hypothesized that expression of molecular chaperones that modulate androgen binding to AR might be altered in prostate cancer and contribute to progression to the AI state. Here, we report that the Hsp90 cochaperone FKBP51 is upregulated in LAPC-4 AI tumors grown in castrated mice and describe a molecular mechanism by which FKBP51 regulates AR activity.

View Article and Find Full Text PDF

Benzoquinone ansamycin antibiotics such as geldanamycin (GA) bind to the NH(2)-terminal ATP-binding domain of heat shock protein (Hsp) 90 and inhibit its chaperone functions. Despite in vitro and in vivo studies indicating promising antitumor activity, derivatives of GA, including 17-allylaminogeldanamycin (17-AAG), have shown little clinical efficacy as single agents. Thus, combination studies of 17-AAG and several cancer chemotherapeutics, including cisplatin (CDDP), have begun.

View Article and Find Full Text PDF

Despite studies that show the antitumor activity of Hsp90 inhibitors, such as geldanamycin (GA) and its derivative 17-allylamino-demethoxygeldanamycin (17-AAG), recent reports indicate that these inhibitors lack significant single-agent clinical activity. Resistance to Hsp90 inhibitors has been previously linked to expression of P-glycoprotein (P-gp) and the multidrug resistant (MDR) phenotype. However, the stress response induced by GA treatment can also cause resistance to Hsp90-targeted therapy.

View Article and Find Full Text PDF

An involvement of molecular chaperones in the action and well-being of steroid receptors was recognized early in the molecular era of hormone research. However, this has continued to be a topic of much enquiry and some confusion. All steroid receptors associate with heat shock protein 90, the main character of a series of multiprotein chaperone complexes generally referred to as the "heat shock protein 90 chaperoning machine.

View Article and Find Full Text PDF

Hsp90 is an essential molecular chaperone required for the normal functioning of many key regulatory proteins in eukaryotic cells. Vertebrates have two closely related isoforms of cytosolic Hsp90 (Hsp90alpha and Hsp90beta). However, specific functions for each isoform are largely unknown, and no Hsp90 co-chaperone has been reported to distinguish between the two isoforms.

View Article and Find Full Text PDF

Hsp90 is an abundant and highly conserved chaperone that functions at later stages of protein folding to maintain and regulate the activity of client proteins. Using a recently described in vitro system to fold a functional model kinase Chk1, we performed a side-by-side comparison of the Hsp90-dependent chaperoning of Chk1 to that of the progesterone receptor (PR) and show that these distinct types of clients have different chaperoning requirements. The less stable PR required more total chaperone protein(s) and p23, whereas Chk1 folding was critically dependent on Cdc37.

View Article and Find Full Text PDF

17-Allylamino-demethoxygeldanamycin (17-AAG), currently in phase I and II clinical trials as an anticancer agent, binds to the ATP pocket of heat shock protein (Hsp90). This binding induces a cellular stress response that up-regulates many proteins including Hsp27, a member of the small heat shock protein family that has cytoprotective roles, including chaperoning of cellular proteins, regulation of apoptotic signaling, and modulation of oxidative stress. Therefore, we hypothesized that Hsp27 expression may affect cancer cell sensitivity to 17-AAG.

View Article and Find Full Text PDF

Purpose: To determine the maximum tolerated dose (MTD), dose-limiting toxicity, and pharmacokinetics of 17-allylamino-demethoxy-geldanamycin (17-AAG) administered on days 1, 4, 8, and 11 every 21 days and to examine the effect of 17-AAG on the levels of chaperone and client proteins.

Experimental Design: A phase I dose escalating trial in patients with advanced solid tumors was done. Toxicity and tumor responses were evaluated by standard criteria.

View Article and Find Full Text PDF

Checkpoint kinase 1 (Chk1), a serine/threonine kinase that regulates DNA damage checkpoints, is destabilized when heat shock protein 90 (Hsp90) is inhibited, suggesting that Chk1 is an Hsp90 client. In the present work we examined the interplay between Chk1 and Hsp90 in intact cells, identified a source of unchaperoned Chk1, and report the in vitro chaperoning of Chk1 in reticulocyte lysates and with purified chaperones and co-chaperones. We find that bacterially expressed Chk1 is post-translationally chaperoned to an active kinase.

View Article and Find Full Text PDF

The molecular chaperone heat shock protein 90 (Hsp90) and its accessory cochaperones function by facilitating the structural maturation and complex assembly of client proteins, including steroid hormone receptors and selected kinases. By promoting the activity and stability of these signaling proteins, Hsp90 has emerged as a critical modulator in cell signaling. Here, we present evidence that Hsp90 chaperone activity is regulated by reversible acetylation and controlled by the deacetylase HDAC6.

View Article and Find Full Text PDF

The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions.

View Article and Find Full Text PDF

The development of green fluorescent protein (GFP) technology combined with live cell microscopy techniques have revealed the dynamic properties of GFP-tagged proteins in the nucleus. The mobility of a GFP-tagged protein can be assessed using a quantitative photobleaching technique, fluorescence recovery after photobleaching (FRAP) analysis. FRAP experiments demonstrate that many nuclear proteins are highly mobile within the nucleus.

View Article and Find Full Text PDF

Live cell imaging has revealed the rapid mobility of steroid hormone receptors within nuclei and their dynamic exchange at transcriptionally active target sites. Although a number of other proteins have been shown to be highly mobile within nuclei, the identity of soluble factors responsible for orchestrating nuclear trafficking remains unknown. We have developed a previously undescribed in situ subnuclear trafficking assay that generates transcriptionally active nuclei, which are depleted of soluble factors required for the nuclear mobility of glucocorticoid (GR) and progesterone receptors (PR).

View Article and Find Full Text PDF

p23 is a small but important cochaperone for the Hsp90 chaperoning pathway. It appears to facilitate the adenosine triphosphate-driven cycle of Hsp90 binding to client proteins. It enters at a late stage of the cycle and enhances the maturation of client proteins.

View Article and Find Full Text PDF

DNA damage and replication stress activate the Chk1 signaling pathway, which blocks S phase progression, stabilizes stalled replication forks, and participates in G2 arrest. In this study, we show that Chk1 interacts with Hsp90, a molecular chaperone that participates in the folding, assembly, maturation, and stabilization of specific proteins known as clients. Consistent with Chk1 being an Hsp90 client, we also found that Chk1 but not Chk2 is destabilized in cells treated with the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG).

View Article and Find Full Text PDF

To elucidate the earliest molecular steps in the activation of transcription by the progesterone receptor (PR), we investigated its activity in a cell-free transcription system utilizing chromatin templates. PR prepared as a ligand-free, recombinant protein failed to induce transcription on chromatin templates. However, transcriptional competence could be restored by coincubation with rabbit reticulocyte lysate (RRL).

View Article and Find Full Text PDF

Nearly 100 proteins are known to be regulated by hsp90. Most of these substrates or "client proteins" are involved in signal transduction, and they are brought into complex with hsp90 by a multiprotein hsp90/hsp70-based chaperone machinery. In addition to binding substrate proteins at the chaperone site(s), hsp90 binds cofactors at other sites that are part of the heterocomplex assembly machinery as well as immunophilins that connect assembled substrate*hsp90 complexes to protein-trafficking systems.

View Article and Find Full Text PDF

The chaperoning activity of the heat shock protein hsp90 is directed, in part, by the binding and hydrolysis of ATP and also by association with co-chaperone proteins. One co-chaperone, p23, binds to hsp90 only when hsp90 is in a conformation induced by the binding of ATP. Once formed, the p23-hsp90 complex is very stable upon the removal of ATP and dissipates at 30 degrees with a half-life of about 45 min.

View Article and Find Full Text PDF

The highly coordinated interactions of several molecular chaperones, including hsp70 and hsp90, are required for the folding and conformational regulation of a variety of proteins in eukaryotic cells, such as steroid hormone receptors and many other signal transduction regulators. The protein called Hop serves as an adaptor protein for hsp70 and hsp90 and is thought to optimize their functional cooperation. Here we characterize the assembly of the hsp70-Hop-hsp90 complex and reveal interactions that cause conformational changes between the proteins in the complex.

View Article and Find Full Text PDF

In the ligand-binding inactive state, the steroid receptor heterocomplex contains Hsp90, Hsp70, high-molecular weight immunophilins, and other proteins. Hsp90 acts in association with co-chaperones to maintain the native state of the receptor within the cells. It was reported earlier that Hsp90 might not be as important for the androgen receptor (AR) activity as for the glucocorticoid receptor (GR) and the progesterone receptor (PR) activities.

View Article and Find Full Text PDF

The progesterone receptor (PR) can be isolated in its native conformation able to bind hormone, yet its ligand-binding domain rapidly loses its activity at elevated temperature. However, an in vitro chaperoning system consisting of five proteins (HSP40, HSP70, HOP, HSP90, and p23) with ATP is capable of restoring this function. The first step of this chaperoning mechanism is usually thought to be the binding of HSP70 to PR.

View Article and Find Full Text PDF

Hsp90, in addition to being an abundant and pivotal cytoplasmic chaperone protein, has been shown to be a weak ATPase. In an effort to characterize the ATPase activity of hsp90, we have observed marked differences in activities among various species of hsp90. Chicken or human hsp90 hydrolyzed ATP with a k(cat) of 0.

View Article and Find Full Text PDF