The SLC (solute carrier) superfamily mediates the passive transport of small molecules across apical and basolateral cell membranes in nearly all tissues. In this paper, we employ bond-graph approaches to develop models of SLC transporters that conserve mass, charge, and energy, respectively, and can be parameterized for a specific cell and tissue type for which the experimental kinetic data are available. We show how analytic expressions that preserve thermodynamic consistency can be derived for a representative four- or six-state model, given reasonable assumptions associated with steady-state flux conditions.
View Article and Find Full Text PDFModern biological research is increasingly informed by computational simulation experiments, which necessitate the development of methods for annotating, archiving, sharing, and reproducing the conducted experiments. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments.
View Article and Find Full Text PDFClinical translation of personalised computational physiology workflows and digital twins can revolutionise healthcare by providing a better understanding of an individual's physiological processes and any changes that could lead to serious health consequences. However, the lack of common infrastructure for developing these workflows and digital twins has hampered the realisation of this vision. The Auckland Bioengineering Institute's 12 LABOURS project aims to address these challenges by developing a Digital Twin Platform to enable researchers to develop and personalise computational physiology models to an individual's health data in clinical workflows.
View Article and Find Full Text PDFThe Transformer-based approaches to solving natural language processing (NLP) tasks such as BERT and GPT are gaining popularity due to their ability to achieve high performance. These approaches benefit from using enormous data sizes to create pre-trained models and the ability to understand the context of words in a sentence. Their use in the information retrieval domain is thought to increase effectiveness and efficiency.
View Article and Find Full Text PDFThis special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.
View Article and Find Full Text PDFMaximising FAIRness of biosimulation models requires a comprehensive description of model entities such as reactions, variables, and components. The COmputational Modeling in BIology NEtwork (COMBINE) community encourages the use of Resource Description Framework with composite annotations that semantically involve ontologies to ensure completeness and accuracy. These annotations facilitate scientists to find models or detailed information to inform further reuse, such as model composition, reproduction, and curation.
View Article and Find Full Text PDFWe review a collection of published renal epithelial transport models, from which we build a consistent and reusable mathematical model able to reproduce many observations and predictions from the literature. The flexible modular model we present here can be adapted to specific configurations of epithelial transport, and in this work we focus on transport in the proximal convoluted tubule of the renal nephron. Our mathematical model of the epithelial proximal convoluted tubule describes the cellular and subcellular mechanisms of the transporters, intracellular buffering, solute fluxes, and other processes.
View Article and Find Full Text PDFWhile ion channels and transporters involved in excitation-contraction coupling have been linked and constructed as comprehensive computational models, validation of whether each individual component of a model can be reused has not been previously attempted. Here we address this issue while using a novel modular modeling approach to investigate the underlying mechanism for the differences between left ventricle (LV) and right ventricle (RV). Our model was developed from modules constructed using the module assembly principles of the CellML model markup language.
View Article and Find Full Text PDFThe Systems Biology Markup Language (SBML) is a popular software-independent XML-based format for describing models of biological phenomena. The BioModels Database is the largest online repository of SBML models. Several tools and platforms are available to support the reuse and composition of SBML models.
View Article and Find Full Text PDFHierarchical modelling is essential to achieving complex, large-scale models. However, not all modelling schemes support hierarchical composition, and correctly mapping points of connection between models requires comprehensive knowledge of each model's components and assumptions. To address these challenges in integrating biosimulation models, we propose an approach to automatically and confidently compose biosimulation models.
View Article and Find Full Text PDFComputational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface.
View Article and Find Full Text PDFComputational simulation experiments increasingly inform modern biological research, and bring with them the need to provide ways to annotate, archive, share and reproduce the experiments performed. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments.
View Article and Find Full Text PDFSemantic annotation is a crucial step to assure reusability and reproducibility of biosimulation models in biology and physiology. For this purpose, the COmputational Modeling in BIology NEtwork (COMBINE) community recommends the use of the Resource Description Framework (RDF). This grounding in RDF provides the flexibility to enable searching for entities within models (e.
View Article and Find Full Text PDFIt has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake SGLT1 and GLUT2, basolateral efflux into the blood GLUT2, and cellular volume changes in response to non-isotonic conditions.
View Article and Find Full Text PDFThis special issue of the contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.
View Article and Find Full Text PDFA standardized approach to annotating computational biomedical models and their associated files can facilitate model reuse and reproducibility among research groups, enhance search and retrieval of models and data, and enable semantic comparisons between models. Motivated by these potential benefits and guided by consensus across the COmputational Modeling in BIology NEtwork (COMBINE) community, we have developed a specification for encoding annotations in Open Modeling and EXchange (OMEX)-formatted archives. This document details version 1.
View Article and Find Full Text PDFThe Data and Resource Center (DRC) of the NIH-funded SPARC program is developing databases, connectivity maps, and simulation tools for the mammalian autonomic nervous system. The experimental data and mathematical models supplied to the DRC by the SPARC consortium are curated, annotated and semantically linked via a single knowledgebase. A data portal has been developed that allows discovery of data and models both via semantic search and via an interface that includes Google Map-like 2D flatmaps for displaying connectivity, and 3D anatomical organ scaffolds that provide a common coordinate framework for cross-species comparisons.
View Article and Find Full Text PDFSummary: As the number and complexity of biosimulation models grows, so do demands for tools that can help users better understand models and make those models more findable, shareable and reproducible. Consistent model annotation is a step toward these goals. Both models and tools are written in a variety of different languages; thus, the community has recognized the need for standard, language-independent methods for annotation.
View Article and Find Full Text PDFSimulating complex biological and physiological systems and predicting their behaviours under different conditions remains challenging. Breaking systems into smaller and more manageable modules can address this challenge, assisting both model development and simulation. Nevertheless, existing computational models in biology and physiology are often not modular and therefore difficult to assemble into larger models.
View Article and Find Full Text PDFThe IWGDF 2019 Updated Guidelines for prevention of foot ulcers in diabetes advise that nerve decompression surgery not be considered. This nerve decompression option has similar scientific supporting evidence to other surgeries which are recommended. The sanction ignores a large body of non-Level 1 evidence demonstrating various beneficial outcomes of ND including pain relief, DFU prevention, and protection from recurrence and amputation.
View Article and Find Full Text PDFPlant species ranges are expected to shift in response to climate change, however, it is unclear how species interactions will affect range shifts. Because of the potential for enemy release of invasive nonnative plant species from species-specific soil pathogens, invasive plants may be able to shift ranges more readily than native plant species. Additionally, changing climatic conditions may alter soil microbial functioning, affecting plant-microbe interactions.
View Article and Find Full Text PDFLike many scientific disciplines, dynamical biochemical modeling is hindered by irreproducible results. This limits the utility of biochemical models by making them difficult to understand, trust, or reuse. We comprehensively list the best practices that biochemical modelers should follow to build reproducible biochemical model artifacts-all data, model descriptions, and custom software used by the model-that can be understood and reused.
View Article and Find Full Text PDF