Electrical activity is widely used for assessing a plant's response to an injury or environmental stimulus. Commonly, a differential electrode recording between silver wire leads with the reference wire connected to the soil, or a part of the plant, is used. One method uses KCl-filled glass electrodes placed into the plant, similar to recording membrane/cell potentials in animal tissues.
View Article and Find Full Text PDFMany desiccation-tolerant plants are widely distributed and exposed to substantial environmental variation across their native range. These environmental differences generate site-specific selective pressures that could drive natural variation in desiccation tolerance across populations. If identified, such natural variation can be used to target tolerance-enhancing characteristics and identify trait associations within a common genetic background.
View Article and Find Full Text PDFWater scarcity, a common stress factor, negatively impacts plant performance. Strategies to cope with it, such as desiccation tolerance, are becoming increasingly important to investigate. However, phenomena, such as intraspecific variation in stress responses have not received much attention.
View Article and Find Full Text PDFTolerance to prolonged water deficit occurs along a continuum in plants, with dehydration tolerance (DhT) and desiccation tolerance (DT) representing some of the most extreme adaptations to water scarcity. Although DhT and DT presumably vary among individuals of a single species, this variability remains largely unstudied. Here, we characterized expression dynamics throughout a dehydration-rehydration time-course in six diverse genotypes of the dioecious liverwort Marchantia inflexa.
View Article and Find Full Text PDFIn seed plants, the proximate causes of spatial segregation of the sexes (SSS) and its association with environmental variation are thought to be linked to sex-specific morphological and physiological variation. To address the general question of linkage among SSS, plant traits and environmental gradients, Marchantia inflexa was used, for which male plants are found under more open tree canopy than females. We hypothesized that males are adapted to higher light intensity and are better able to tolerate water stress than females, as is the case with seed plants.
View Article and Find Full Text PDF