As the characteristic dimensions of modern top-down devices are getting smaller, such devices reach their operational limits imposed by quantum mechanics. Thus, two-dimensional (2D) structures appear to be one of the best solutions to meet the ultimate challenges of modern optoelectronic and spintronic applications. The representative of III-V semiconductors, gallium nitride (GaN), is a great candidate for UV and high-power applications at a nanoscale level.
View Article and Find Full Text PDFHysteresis is a problem in field-effect transistors (FETs) often caused by defects and charge traps inside a gate isolating (e.g., SiO) layer.
View Article and Find Full Text PDFThe article shows how the dynamic mapping of surface potential (SP) measured by Kelvin probe force microscopy (KPFM) in combination with calculation by a diffusion-like equation and the theory based on the Brunauer-Emmett-Teller (BET) model of water condensation and electron hopping can provide the information concerning the resistivity of low conductive surfaces and their water coverage. This is enabled by a study of charge transport between isolated and grounded graphene sheets on a silicon dioxide surface at different relative humidity (RH) with regard to the use of graphene in ambient electronic circuits and especially in sensors. In the experimental part, the chemical vapor-deposited graphene is precisely patterned by the mechanical atomic force microscopy (AFM) lithography and the charge transport is studied through a surface potential evolution measured by KPFM.
View Article and Find Full Text PDFThis article deals with the analysis of the relationship between the pull-off force measured by atomic force microscopy and the dimensions of water bridge condensed between a hydrophilic silicon oxide tip and a silicon oxide surface under ambient conditions. Our experiments have shown that the pull-off force increases linearly with the radius of the tip and nonmonotonically with the relative humidity (RH). The latter dependence generally consists of an initial constant part changing to a convex-concave-like increase of the pull-off force and finally followed by a concave-like decrease of this force.
View Article and Find Full Text PDF