Recently, we described a method to quantify the time course of total transmembrane current (Im) and the relative role of its two components, a capacitive current (Ic) and a resistive current (Iion), corresponding to the cardiac action potential during stable propagation. That approach involved recording high-fidelity (200 kHz) transmembrane potential (Vm) signals with glass microelectrodes at one site using a spatiotemporal coordinate transformation via measured conduction velocity. Here we extend our method to compute these transmembrane currents during stable and unstable propagation from fluorescence signals of Vm at thousands of sites (3 kHz), thereby introducing transmembrane current imaging.
View Article and Find Full Text PDFHolographic laser microsurgery is used to isolate single amnioserosa cells in vivo during early dorsal closure. During this stage of Drosophila embryogenesis, amnioserosa cells undergo oscillations in apical surface area. The postisolation behavior of individual cells depends on their preisolation phase in these contraction/expansion cycles: cells that were contracting tend to collapse quickly after isolation; cells that were expanding do not immediately collapse, but instead pause or even continue to expand for ∼40 s.
View Article and Find Full Text PDFThe measurement, quantitative analysis, theory, and mathematical modeling of transmembrane potential and currents have been an integral part of the field of electrophysiology since its inception. Biophysical modeling of action potential propagation begins with detailed ionic current models for a patch of membrane within a distributed cable model. Voltage-clamp techniques have revolutionized clinical electrophysiology via the characterization of the transmembrane current gating variables; however, this kinetic information alone is insufficient to accurately represent propagation.
View Article and Find Full Text PDFTo study the process of morphogenesis, one often needs to collect and segment time-lapse images of living tissues to accurately track changing cellular morphology. This task typically involves segmenting and tracking tens to hundreds of individual cells over hundreds of image frames, a scale that would certainly benefit from automated routines; however, any automated routine would need to reliably handle a large number of sporadic, and yet typical problems (e.g.
View Article and Find Full Text PDFDefibrillators are a critical tool for treating heart disease; however, the mechanisms by which they halt fibrillation are still not fully understood and are the subject of ongoing research. Clinical defibrillators do not provide the precise control of shock timing, duration, and voltage or other features needed for detailed scientific inquiry, and there are few, if any, commercially available units designed for research applications. For this reason, we have developed a high-voltage, programmable, capacitive-discharge stimulator optimized to deliver defibrillation shocks with precise timing and voltage control to an isolated animal heart, either in air or in a bath.
View Article and Find Full Text PDF