Composite MRI scales of central nervous system tissue destruction correlate stronger with clinical outcomes than their individual components in multiple sclerosis (MS) patients. Using machine learning (ML), we previously developed Combinatorial MRI scale (COMRISv1) solely from semi-quantitative (semi-qMRI) biomarkers. Here, we asked how much better COMRISv2 might become with the inclusion of quantitative (qMRI) volumetric features and employment of more powerful ML algorithm.
View Article and Find Full Text PDFRepeated injections of linear gadolinium-based contrast agent (GBCA) have shown correlations with increased signal intensities (SI) on unenhanced T1-weighted (T1w) images. Assessment is usually performed manually on a single slice and the SI as an average of a freehand region-of-interest is reported. We aim to develop a fully automated software that segments and computes SI ratio of dentate nucleus (DN) to pons (DN/P) and globus pallidus (GP) to thalamus (GP/T) for the assessment of gadolinium presence in the brain after a serial GBCA administrations.
View Article and Find Full Text PDFIn modern neuroscience there is general agreement that brain function relies on networks and that connectivity is therefore of paramount importance for brain function. Accordingly, the delineation of functional brain areas on the basis of diffusion magnetic resonance imaging (dMRI) and tractography may lead to highly relevant brain maps. Existing methods typically aim to find a predefined number of areas and/or are limited to small regions of grey matter.
View Article and Find Full Text PDFIn recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density).
View Article and Find Full Text PDF